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Abstract. In this paper, we suggest NPCm, a new Naïve Bayesian-like Possibilistic Classifier for mixed categorical and nu-
merical data. The proposed classifier is based on a bi-module belief estimation as well as the Generalized Minimum-based (G-
Min) algorithm which has been recently proposed for the classification of categorical data. Distinctively, in the design of both
categorical and numerical belief estimation modules, we make use of a probability-to-possibility transform-based possibilistic
approach as a strong alternative to the probabilistic one when dealing with decision-making under uncertainty. Thereafter, we
use the G-Min algorithm as an improvement of the minimum algorithm to make decision from possibilistic beliefs. Experimental
evaluations on 12 datasets taken from University of California Irvine (UCI) and containing all mixed data, confirm the effec-
tiveness of the proposed new G-Min-based NPCm. Indeed, with the used datasets, the proposed classifier outperforms all the
classical Bayesian-like classification methods. Consequently, we prove the efficient use of the bi-module possibilistic estimation
approach together with the G-Min algorithm for the classification of mixed categorical and numerical data.
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1. Introduction

Selecting the appropriate classification technique
for a decision-making problem is a crucial fact that
considerably relies on specifications of input data.
Among these specifications, we can find the type of in-
put data which may be either categorical, numerical or
mixed. Mixed data, as they imply, reflect data which
are formed of both categorical and numerical data [1].

*Corresponding author. E-mail: karim.baati@enis.tn

These data may be encountered in several real-world
applications such as heart disease diagnosis [2], deci-
sion on biodegradability of chemicals [3], credit deci-
sion making [4], etc.

Bayesian-like classifiers, namely naïve Bayes and
naïve possibilistic classifiers stand for straightfor-
ward classifiers that assume the independence of input
features. Despite their strong assumption, Bayesian-
like classifiers can often outperform more sophisti-
cated classification models [5]. Furthermore, two ver-
sions may be found for each Bayesian-like classifier:
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one for discrete attributes and another for numerical
ones. Therefore, three main approaches may cope with
mixed data using Bayesian-like classifiers. In the first
approach, an adequate algorithm such as the Entropy-
MDLP algorithm (Minimum Description Length Prin-
ciple) [6] is called in order to discretize the numerical
part of data. Later, the Bayesian-like classifier version
for categorical data is used in order to estimate beliefs
from the obtained outcomes. In the second approach,
numerical values are assigned to the categorical part
of information (for instance for a given attribute "tem-
perature", we assign the number 1 to the value "high",
the number 2 to the value "intermediate" and the num-
ber 3 to the value "low"). Afterward, we make use of
the appropriate version for numerical data to estimate
beliefs. Finally, in the third approach, we maintain the
categorical data categorical and the continuous data
continuous and we estimate beliefs using the adequate
Bayesian-like classifier version for each subset of data.
Intuitively, the third approach is likely to be the most
efficient since it keeps data in their raw type and hence
avoids additional transformation.

In recent studies, naïve possibilistic classifier has
attracted more attention among Bayesian-like clas-
sification models. In particular, various naïve possi-
bilistic classifiers which are based on the probability-
possibility transformation rule of Dubois et al. [7] have
been proposed to deal with decision-making from im-
perfect data. Indeed, a classifier based on this transfor-
mation in the discrete case and calling a new decision
algorithm called the Generalized minimum-based (G-
Min) algorithm has been successfully applied on cat-
egorical data [8]. Further, two classifiers based on the
same transformation in the continuous case and deal-
ing with numerical features, namely, Naïve Possibilis-
tic Classifier for numerical data and Flexible Naïve
possibilistic classifier for numerical data, have been ef-
ficiently investigated on numerical information [9].

This study is motivated by the emergence of new
probability-to-possibility transform-based possibilis-
tic classifiers which have shown good performance
when dealing with uncertainty from either categorical
[10][11][8] or numerical [9][12][13] data. In this con-
text, we propose NPCm, a Naïve Possibilistic Classi-
fier for mixed data as a novel technique that can cope
with mixed categorical and numerical information. On
the one hand, the proposed classifier maintains the raw
type of each data subset (categorical and numerical)
by using a bi-module estimation. On the other hand, it
makes use of the G-Min algorithm that has proven its
effectiveness when classifying categorical data.

The remainder of the paper is structured as follows.
Related work is reported in Section 2. Next, in Section
3, we restate the theoretical foundations of the possi-
bilistic classification. Afterward, Section 4 details dif-
ferent technical aspects of the proposed G-Min-based
NPCm. The experimentation results are communi-
cated in Section 5. Lastly, Section 6 concludes the pa-
per and suggests some directions for future research.

2. Related work

A first version of Bayesian-like possibilistic classi-
fier for categorical data was proposed in [15] in order
to cope with imprecise training data. However, no effi-
cient method was proposed in this work for the elicita-
tion of possibilistic distributions. Indeed, it was stated
in [15] that the procedure proposed to estimate possi-
bility distributions which is based on the computation
of the maximum-based projection [14], may construct
pathological cases [15].

Later, Haouari et al. [16] have proposed a naïve pos-
sibilistic network classifier which models imperfect at-
tribute values when no prior knowledge is available.
In this particular context, possibility distributions are
built using the partial ignorance which is expressed by
an expert.

In [17], authors proposed an efficient algorithm
which makes use of the Jeffrey’s rule in order to re-
consider possibilistic knowledge included by a naïve
product-based possibilistic network classifier on the
basis of uncertain inputs. The proposed algorithm
presents the main advantage of being able to process
the classification task in polynomial time with respect
to the number of features.

In [18], authors suggested a new Bayesian classi-
fier for uncertain categorical or continuous attributes
which integrates uncertainty in the Bayesian theorem
and makes use of a new parameter estimation method.
Moreover, in [19], authors developed a classification
algorithm which can generate rules from uncertain
continuous data. For the two works in [18] and [19],
authors use intervals in order to model uncertainty over
continuous attribute values.

In [9], authors proposed two kinds of possibilistic
classifiers for numerical data. In the first one, authors
extended the classical and the flexible Bayesian classi-
fiers by applying a probability-possibility transforma-
tion to Gaussian distributions. In the second one, au-
thors directly expressed data in possibilistic formats
using the idea of proximity between data values. Ex-



K. Baati et al. / A new possibilistic classifier for mixed categorical and numerical data 3

periments in [9] have shown the good performance of
the flexible possibilistic classifier when dealing with
numerical data. Later, authors in [21] extended the
probability-to-possibility transform based classifiers
which were proposed in [9] in order to deal with uncer-
tainty and imprecision in data modeling. Experimen-
tal results reported in [21] have confirmed the robust
behavior of the probability-to-possibility transform-
based classifiers when they treat imperfect data.

In [8], authors suggested NPCc, a new naïve pos-
sibilistic classifier for categorical data. The proposed
classifier relies on the possibilistic approach to esti-
mate beliefs from categorical data and makes use of
the G-Min as a novel algorithm to make decision from
possibilistic beliefs. Experimental results in [8] have
proved the efficiency of the possibilistic approach to-
gether with the G-Min algorithm for the classification
of categorical data.

In a more recent study, three improved naïve possi-
bilistic classifiers have been proposed in [20]. The new
techniques aim to classify imprecise data effectively
by relaxing two strong assumptions, namely attributes
independence and their equal importance.

Based on previous studies, we can notice that
Bayesian-like possibilistic classifiers which have been
proposed in the literature are either suitable for cate-
gorical or numerical data. By contrast, we report in the
current paper a new Bayesian-like possibilistic method
which is convenient to classify mixed categorical and
numerical data.

3. Possibilistic classification : theoretical
background

In order to recall some basics of the possibilistic
framework, the following notations are considered in
this section as well as in the remainder of this paper:
C = {c1, c2, ..., cj , ..., cC} : an exhaustive and ex-

clusive universe of discourse of classes
A = {a1, a2, ..., ai, ..., aM} : a set of attributes

which may stand for either categorical or numerical
values.
vit : the value taken by a given attribute ai during

test.

3.1. Possibility theory

Possibility theory, introduced by Zadeh [22] and
then developed by Dubois and Prade [23] is a fusion
theory based on fuzzy sets theory and devoted to rep-

resent and combine imperfect information in a qual-
itative or quantitative way. Information imperfections
treated by possibility theory may represent the uncer-
tainty due to variability of observations, the uncer-
tainty due to incomplete information, the information
ambiguity, the information imprecision, etc [24].

At the semantic level, the basic function in possi-
bility theory is a possibility distribution denoted as π
which assigns to each possible class cj from C a value
in [0, 1]. The possibility value assigned to a class cj
stands for plausibility i.e. the belief degree that this
class is the right one.

By convention, π(cj) = 1 means that cj is totally
possible and if π(cj) = 0, cj is considered as impossi-
ble. Intermediary values distinguish values which are
more possible than others. Finally, note that in the nor-
malization version of a possibility distribution, we re-
quire that at least one class of C is totally possible.

On the other hand, as being based on fuzzy sets the-
ory, possibility theory may recall all the panoply of
fuzzy combination rules in order to fuse possibility es-
timates of a given class [25].

3.2. Conditional Possibility

Possibilistic conditioning corresponds to revising an
initial possibility distribution when a new information
becomes available. In possibility theory, conditioning
may be defined through a counterpart of the Bayes
rule. In fact, it can be stated for two subsets E and F
of 2C by:

Π(E ∩ F ) = Π(E|F ) ∗Π(F ) (1)

where * is a combination operator which is commonly
selected as the minimum or the product [26].

3.3. Naïve Bayes Style Possibilistic Classification

Similarly to Bayesian classification (see Appendix
A for a reminder), possibilistic classification relies on
the aforementioned possibilistic version of the Bayes
rule and can be defined by:

π(cj |a1 = v1t, ..., aM = vMt) =

π(a1 = v1t, ..., aM = vMt|cj) ∗ π(cj)

π(a1 = v1t, ..., aM = vMt)

(2)

By assuming that there is no a priori knowledge
about classes and the input vector to be classified, we
can take π(cj) = 1 and π(a1 = v1t, ..., aM = vMt) =
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1. Moreover, as in naïve Bayesian combination, naïve
possibilistic classification assumes that attributes {ai}
(∀ 1 ≤ i ≤ M) are independent. In this case, the
conditional joint possibility π(a1 = v1t, ..., aM =
vMt|cj) is equal to the fusion of conditional possibil-
ity estimations stemming from each single attribute ai.
Therefore, in a context characterized by no a priori
knowledge about classes and input vector as well as
independent attributes, equation 4 becomes [15] :

π(cj |a1 = v1t, ..., aM = vMt) =

π(a1 = v1t|cj) ∗ ... ∗ π(aM = vMt|cj)
(3)

As stated for the conditioning rule, * may be taken as
either the product or the minimum [26].

In practice, given a new instantiation {a1 = v1t, ..., aM =
vMt}, we must establish a matrix Π of possibilistic
estimates in order to perform the product-based or the
minimum-based classification. This matrix is defined
as follows :

Π = {π(i, j)} = {π(ai = vit|cj)} (4)

∀ 1 ≤ i ≤M and ∀ 1 ≤ j ≤ C
Lastly, the final decision stands for the class c∗ for

which equation 3 yields the highest degree of possibil-
ity:

c∗ = arg max
j

(π(1, j) ∗ ... ∗ π(M, j)) (5)

4. Proposed Generalized Minimum-based
Possibilistic Classifier for mixed data
(G-Min-based NPCm)

In order to make decision from mixed categorical
and numerical data, we propose a new possibilistic
classifier which rests on two main steps as illustrated
in Fig. 1.

In the first step, a bi-module belief estimation is ap-
plied on mixed data. In order to achieve that, we make
use of a specific estimation module that is convenient
to each type of data. Indeed, for categorical data, we
call the estimation module related to the Naïve Pos-
sibilistic classifier for categorical data (NPCc) which
has been proposed in [8]. As for numerical data, we
make use of the estimation module related to the Naïve
Possibilistic Classifier for numerical data (NPCn)
which has been introduced in [9].

Finally, the G-Min algorithm is employed in order
to make decision from the obtained possibilistic esti-
mates. This algorithm stands for an improvement of
the classical minimum-based classification algorithm
and it aims to improve the classification quality by
finding a more reliable final decision.

In the following, technical details of both the bi-
module estimation and the G-Min algorithm are given.

Fig. 1. General structure of the G-Min-based NPCm

4.1. Bi-module estimation

As mentioned earlier, the bi-module estimation is
based on respectively the two estimation modules of
NPCc and NPCn. Each of the two modules re-
lies on the probabilitiy-to-possibility transformation of
Dubois et al. in respectively the discrete and continu-
ous case [7].

4.1.1. Estimation module for categorical data
To illustrate the estimation module for categorical

data, let consider Vi = {vi1, vi2, ..., vis, ..., viz} the
set of possible categorical values for a given attribute
ai. In order to build possibility distributions from Vi,
we start by computing the conditional probability mea-
sures {p(ai = vis|cj)} (∀ 1 ≤ s ≤ z) for each at-
tribute ai with respect to each class cj using the max-
imum likelihood estimation (see details in Appendix
A). Later, we use the probability-possibility transfor-
mation of Dubois et al. in the discrete case [7] in order
to express possibilistic estimates. This transformation
is defined by :

π(ai = vis|cj) =
∑

vir|p(vir)≤p(vis)

p(ai = vir|cj) (6)

with 1 ≤ r ≤ z
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4.1.2. Estimation module for numerical data
To estimate possibilistic beliefs from numerical

data, attribute values are first normalized as follows:

ain =
ai −min(ai)

max(ai)−min(ai)
(7)

where min and max represent respectively the mini-
mum and the maximum value of the attribute ai over
the training set. For simplicity reasons, we consider
that all attribute value ai’s used in NPCn estimation
module [9] as well as in all estimation modules for nu-
merical data are normalized and then refer to the cor-
responding values ain .

As in the Naïve Bayes Classifier for numerical data
(NBCn) (see Appendix A), it has been assumed in the
NPCn [9] that each attribute ai is a random variable
which is normally distributed over each class cj . Thus,
a Gaussian distribution gij = g(ai, µij , σij) is com-
puted for each feature ai with regard to each class cj .
For this Gaussian, parameters µij and σij represent,
respectively, the mean and the standard deviation of
the variable ai for the class cj and they are estimated
from training samples. Based on the obtained Gaus-
sian, authors of [9] give the estimation of the proba-
bility P (Iai

) of the confidence interval centered at µij

as:

P (Iai
|cj) = 2 ∗G(ai, µij , σij)− 1 (8)

where G is a Gaussian cumulative distribution
which may be assessed using the table of the stan-
dard normal distribution. Later, authors of [21] call the
probability-possibility transformation of Dubois et al.
in the continuous case [7] in order to estimate the pos-
sibility π(ai = vit|cj) of each test value as follows
[9]:

π(ai = vit|cj) = 1− (2 ∗G(vit, µij , σij)− 1)
= 2 ∗ (1−G(vit, µij , σij))

(9)

4.2. Generalized-minimum-based possibilistic
classification algorithm (G-Min algorithm)

As mentioned in Section 3, the minimum-based
classification algorithm assigns the final decision to the
class that satisfies:

c∗ = arg max
j

(min
i
π(i, j)) (10)

where Π = {π(i, j)} (1 ≤ i ≤ M and 1 ≤ j ≤
C) the matrix of possibilistic estimates which has been
defined in equation 4.

In many cases, the final class issued from the
minimum-based possibilistic classification may have
very close possibility estimate to other alternatives. In
such situation, the final class may not be the right one
and therefore the quality of decision is likely to be seri-
ously altered. In this context, the G-Min has been pro-
posed in order to avoid the ambiguity between the final
decision and the rest of hypotheses and hence to find a
decision with a possibility estimate widely away from
other alternatives (with at least a preset threshold value
α). Indeed, this algorithm reflects a "wise" behavior
that delays the final decision until a reliable one is got.

Technically speaking, the G-Min algorithm requires
the matrix Π of possibilistic estimates and is based on
two main steps. The first aims to establish a set of pos-
sible decisions whereas the second aims to filter this
set in order to find a reliable final class.

More details about the proposed algorithm may be
found in Algorithm 1 as well as in [8].

5. Experimental evaluations

This section provides experimental results for the
proposed G-Min-basedNPCm and for a set of Bayesian-
like classifiers that have been applied on mixed data.
This set of classifiers includes three major subsets:

– Naïve Bayesian-like classifiers for categorical
data : this subset includes Naïve Bayes Classi-
fier for categorical data (NBCc) (See Appendix
A) and NPCc. For this subset of classifiers, the
numerical part of data is discretized using the
Entropy-MDLP (Minimum Description Length
Principle) algorithm [6].

– Naïve Bayesian-like classifiers for numerical data
: this subset includes Naïve Bayes Classifier for
numerical data (NBCn) (See Appendix A), Flex-
ible Naïve Bayes Classifier for numerical data
(FNBCn) (See Appendix A), NPCn and Flex-
ible Naïve Possibilistic Classifier for numerical
data (FNPCn) (See Appendix B). For this subset
of classifiers, we have assigned numerical values
to the categorical part of inputs.

– Naïve Bayesian-like classifiers for mixed data :
this subset involves classifiers with the same pat-
tern of NPCm but in which the bi-module esti-
mation is differently designed. These classifiers
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Algorithm 1 G-Min Algorithm
Require: Matrix of possibilistic estimations Π
Ensure: Final decision c∗

Π← sort(Π,′ rows′,′ increase′)
Π← sort(Π,′ columns′,′ decrease′)
q ← 1
dset[q]← arg(π(1, 1))
c∗ ← arg(π(1, 1))
for j ← 2 to C do

if π(1, 1)− π(1, j) < α then
q ← q + 1
dset[q]← arg(π(1, j))

end if
end for
card← cardinality(dset)
i← 2
while card 6= 1 and i 6= A do

for q ← 1 to dset.size do
poss[q]← arg−1(dset[q], i)

end for
max← maximum(poss)
for q ← 1 to poss.size do

if max− poss[q] ≥ α then
dset← dset.remove(arg(poss[q])
c∗ ← max

end if
end for
card← cardinality(dset)
i← i+ 1

end while

are namely, Naïve Bayes Classifier for mixed data
(NBCm), Flexible Naïve Bayes Classifier for
mixed data (FNBCm) and Flexible Naïve Possi-
bilistic Classifier for mixed data (FNPCm). De-
scription of the bi-module estimation in each of
these classifiers is given in Table 1.

Table 1

Description of the bi-module estimation in Bayesian-like classifiers
for mixed data

Classifier Categorical data Numerical data

NBCm NBCc estim. module NBCn estim. module
FNBCm NBCc estim. module FNBCn estim. module
FNPCm NPCc estim. module FNPCn estim. module

During the experimental part of our work, we have
used the Bayes rule to make decision from probabilis-
tic beliefs whereas the product, the minimum as well
as the G-Min rules have been investigated in order to

carry out the possibilitic classification. Moreover, we
have taken α = 0.1 in order to perform the G-Min-
based classification.

Experiments are conducted on 12 datasets from UCI
machine learning repository [27] containing all mixed
data. Characteristics of these datasets are illustrated in
Table 2. As shown in Table 2, the number of cases
ranges from 57 to 3136, the number of attributes from
9 to 41 and the number of classes from 2 to 7. More-
over, some datasets contain missing values and oth-
ers no. Therefore, a wide variety of problems is repre-
sented.

Table 2
Details of datasets used in the experiments

Dataset Instances Missing Att. Cat. Num. Classes

values?

Sick 3163 Yes 25 18 7 2

Contra. 1473 No 9 7 2 3

QSAR 1055 No 41 4 37 2

German 1000 No 20 13 7 2

Credit 690 Yes 15 9 6 2

Cylinder 512 Yes 39 19 20 2

Horse 368 Yes 22 15 7 2

Heart 270 No 13 7 6 2

Auto 205 Yes 25 10 15 7

Flags 194 No 28 18 10 6

Hepat. 155 Yes 19 13 6 2

Labor 57 No 16 8 8 2

During experiments, we have carried a 10-cross val-
idation and as in [9], we have used the standard Per-
cent of Correct Classification (PCC) to assess perfor-
mances of different Bayesian-like classifiers. PCC is
defined by:

PCC =
number of well classified instances

total number of instances
∗100

(11)

Experimental results obtained with various Bayesian-
like classifiers are shown in Table 3.
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From Table 3, we can see that:

– The proposed classifier is the best in terms of av-
erage rank among all the 20 compared Bayesian-
like classifiers.

– The proposed classifier is the best-ranked on 7
among the 20 benchmarks (namely, in datasets
Sick, QSAR, Credit, Horse, Heart, Flags and
Hepatitis).

– The second most efficient classifier among the set
of classifiers is the product-based FNCPn. That
confirms the good performance of this classifier
which has been already reported in [9] and justi-
fies the legitimacy of the use of a probability-to-
possibility transform-based method for possibil-
ity estimation within the proposed classifier.

– The proposed G-Min-based NPCm outperforms
the minimum-based NPCm and the product-
based NPCm as well. These results reveal that
the efficiency of the proposed G-Min-basedNPCm

is not due to the only use of the possibilitic es-
timation approach but rather to the simultaneous
use of this approach with the G-Min algorithm.

On the other side, in order to compare the proposed
classifier with the rest of Bayesian-like classifiers in
terms of PCC, we have used the Wilcoxon Matched-
Pairs Signed-Ranks Test as detailed in [28]. It is a non-
parametric test which is devoted to compare two clas-
sifiers over multiple data sets.

Comparison results using the Wilcoxon Matched-
Pairs Signed-Ranks Test are given in Table 4 and they
show that the proposed G-Min-based NPCm outper-
forms all the compared Bayesian-like classifiers (p −
value < 0.05).

6. Conclusion

The appeal of the proposed work is related to the
need to involve mixed data in real-world applications
and hence the necessity to find techniques which per-
form well when they handle this type of data.

In this context, we have proposed the G-Min-based
NPCm as a new technique which makes decision
from mixed data pervaded with uncertainty. Based
on experimentation and comparison results with a
panoply of Bayesian-like classifiers, we have proven
the efficiency of the suggested classifier. That can be
explained by the fact that the possibilistic approach in
both estimation (bi-module possibilistic method) and
classification (G-Min algorithm) rests on fuzzy logic

which is a strong framework to deal with decision
making under uncertainty in real world settings [29].

To conclude, the current work is likely to be consid-
ered, from a deeper point of view, as a study that aimed
to select the best classifier that deals with mixed data
among a particular family of classifiers (Bayesian-
like). Thus, many interesting studies in the future may
be conducted with the same objective to find the most
accurate classifier for mixed data among other classifi-
cation families such as logic-based classification meth-
ods, perceptron-based techniques and Support Vector
Machines (SVM) [30]. Indeed, only based on such
studies (in addition to the current one) that we can
find the classification technique which is absolutely the
best when handling mixed categorical and numerical
information.
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Appendix A: Naïve Bayesian Classifier

Naïve Bayes classifier rests on the Bayes rule in
order to compute the posterior probability for each
class cj in the presence of a new instantiation {a1 =
v1t, ..., aM = vMt}. Bayes rule is defined by:

p(cj |a1 = v1t, ..., aM = vMt) =

p(a1 = v1t, ..., aM = vMt|cj).p(cj)
p(a1 = v1t, ..., aM = vMt)

(12)

The term P (a1 = v1t, ..., aM = vMt) is a normaliza-
tion factor which can be ignored. Moreover, in naïve
Bayesian classification settings, attributes are assumed
to be independent so that the Bayes rule becomes:

p(cj |a1 = v1t, ..., aM = vMt) =

M∏
i=1

p(ai = vit).p(cj)
(13)

When dealing with categorical data, naïve Bayes
classifier computes probability distributions from train-
ing data using the maximum likelihood estimation. In-
deed, in the Naïve Bayesian Classifier for categorical
data (NBCc), the probability of each discrete value
vis (∀ 1 ≤ s ≤ z) of a given attribute ai is defined by:

p(ai = vis|cj) =
#(ai = vis, cj)

#cj
(14)

where #(ai = vis, cj) is the number of training sam-
ples belonging to the class cj and having the value vis
for the attribute ai and #cj is the number of training
samples that belong to the class cj .

In naïve Bayes classifiers for numerical data, two
main approaches may be found in order to build prob-
ability distributions. The first (which is called the nor-
mal approach) is used within the Naïve Bayes Classi-
fier for numerical data (NBCn) whereas the second
(which is called the kernel approach) is used within the
so-called Flexible Naïve Bayes Classifier for numeri-
cal data (FNBCn) [32].

In the normal method, each attribute ai is assumed
to be normally distributed over each hypothesis cj and
hence it is supposed to follow a Gaussian distribution
as stated in the following :

p(ai|cj) = g(ai, µj , σj) (15)

For this Gaussian, parameters µj and σj represent,
respectively, the mean and the standard deviation of
training instances belonging to the class cj . Therefore,
in order to build theNBCn estimation module, µj and
σj are first found from training samples and the proba-
bility measure assigned to each test value vit of a given
attribute ai is given as follows [31]:

p(ai = vit|cj) =
1√

2π.σj
exp(− (vit − µj)

2

2.σ2
j

) (16)

In the kernel method, the normality assumption is
abandoned and a nonparametric kernel density formed
of a set of Gaussians is used instead. To illustrate this
method, let consider Nij the number of values {vil}
(1 ≤ l ≤ Nij) of a given ai which are encountered
during training with respect to a given class cj and let
σj the standard deviation defined by:

σj =
1√
Nj

(17)

where Nj represents the total number of training in-
stances belonging to the class cj .

In order to build the kernel density, Gaussians
{g(ai, vil, σj)} (1 ≤ l ≤ Nij) are stored during train-
ing. Then, the probability measure assigned to each
test value vit of a given attribute ai is given as an av-
erage of these Gaussians [32]:

p(ai = vit|cj) =
1

Nj

Nj∑
l=1

g(vit, vil, σj) (18)

Lastly, the final decision in Bayesian classification
stands for the class c∗ with the highest posterior prob-
ability:

c∗ = arg max
j

(p(cj |a1 = v1t, ..., aM = vMt)) (19)



K. Baati et al. / A new possibilistic classifier for mixed categorical and numerical data 11

Appendix B: Flexible Naïve Possibilistic Classifier
for numerical data (FNPCn)

As in FNBCn, the estimation module of the Flex-
ible Naïve Possibilistic Classifier for numerical data
(FNPCn) [16] is based on a set of possibility distri-
butions which are estimated using training samples. In
order to illustrate the method used for estimation, we
must first consider the standard deviation σ defined in
[9] by:

σ =
1√
N

(20)

where N represents the total number of training in-
stances.

Later, the probability measure assigned to each new
value vit of a given attribute ai is computed as an av-
erage of possibility distributions [9]:

p(ai = vit|cj) =
1

Nj

Nj∑
l=1

π(vit, cj l) (21)

with:

π(vit|cj l) = 2 ∗ (1−G(vit, vil, σ)) (22)

where Nj represents the total number of training in-
stances belonging to the class cj , G a Gaussian cu-
mulative distribution which may be assessed using the
table of the standard normal distribution and {vil}
(1 ≤ l ≤ Nij) the training instances of a given ai with
regard to a given class cj .


