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Abstract. Several information security techniques are available today to protect information systems 

against unauthorized use, duplication, alteration, destruction and virus attacks. An Intrusion 

Detection System (IDS) is a program that analyzes what happens or has happened during an 

execution and tries to find indications that the computer has been misused. This article presents some 

of the challenges in designing efficient intrusion detection systems which could provide high 

accuracy, low false alarm rate and reduced number of features. Finally, we present how some of the 

computational intelligence paradigms could be used in designing intrusion detection systems in a 

distributed environment. 

1 .  Intrusion Detection Systems 

Attacks on the computer infrastructures are becoming an increasingly serious problem. Computer 

security is defined as the protection of computing systems against threats to confidentiality, integrity, 

and availability. Confidentiality (or secrecy) means that information is disclosed only according to 

policy, integrity means that information is not destroyed or corrupted and that the system performs 

correctly, availability means that system services are available when they are needed. Computing 

systems refer to computers, computer networks, and the information they handle. Security threats 

come from different sources such as natural forces (such as flood), accidents (such as fire), failure of 

services (such as power) and people known as intruders. There are two types of intruders: the 



external intruders who are unauthorized users of the machines they attack, and internal intruders, who 

have permission to access the system with some restrictions. The traditional prevention techniques 

such as user authentication, data encryption, avoiding programming errors and firewalls are used as 

the first line of defense for computer security. If a password is weak and is compromised, user 

authentication cannot prevent unauthorized use, firewalls are vulnerable to errors in configuration 

and ambiguous or undefined security policies. They are generally unable to protect against malicious 

mobile code, insider attacks and unsecured modems. Programming errors cannot be avoided as the 

complexity of the system and application software is changing rapidly leaving behind some 

exploitable weaknesses. An intrusion is defined as any set of actions that attempt to compromise the 

integrity, confidentiality or availability of a resource. Intrusion detection is therefore required as an 

additional wall for protecting systems. Intrusion detection is useful not only in detecting successful 

intrusions, but also provides important information for timely countermeasures. 

Intrusion detection is classified into two types: misuse and anomaly detection. Misuse intrusion 

detection uses well-defined patterns of the attack that exploit weaknesses in system and application 

software to identify the intrusions. These patterns are encoded in advance and used to match against 

the user behavior to detect intrusion. Anomaly intrusion detection uses the normal usage behavior 

patterns to identify the intrusion. The normal usage patterns are constructed from the statistical 

measures of the system features. The behavior of the user is observed and any deviation from the 

constructed normal behavior is detected as intrusion.  

Dorothy Denning [1] proposed the concept of intrusion detection as a solution to the problem of 

providing a sense of security in computer systems. The basic idea is that intrusion behavior involves 

abnormal usage of the system. Different techniques and approaches have been used in later 

developments. Some of the techniques used are statistical approaches, predictive pattern generation, 

expert systems, keystroke monitoring, state transition analysis, pattern matching, and data mining 

techniques. Figure 1 illustrates a simple network, which is protected using IDS. 
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Figure 1. Network protection using conventional IDS 

Statistical approaches compare the recent behavior of a user of a computer system with observed 

behavior and any significant deviation is considered as intrusion. This approach requires construction 

of a model for normal user behavior. Any user behavior that deviates significantly from this normal 

behavior is flagged as an intrusion. Predictive pattern generation uses a rule base of user profiles 

defined as statistically weighted event sequences. This method of intrusion detection attempts to 

predict future events based on events that have already occurred. State transition analysis approach 

uses the state transitions of the system to identify the intrusions. State transition diagrams list only the 

critical events that must occur for the successful completion of the intrusion. Keystroke monitoring 

technique utilizes user’s keystrokes by a pattern matching of the sequence of keystrokes to some 

predefined sequences to detect the intrusion. The main problems with this approach are lack of 

support from operating system to capture the keystroke sequences and also many ways of expressing 

the sequence of keystrokes for same attack.  

Expert systems have played an important role to build IDS. The rules may recognize single auditable 

events that represent significant danger to the system by themselves, or they may recognize a 

sequence of events that represent an entire penetration scenario.  

2.  Computational Intelligence Paradigms 

Computational intelligence approaches for intrusion detection was first implemented in mining audit 

data for automated models for intrusion detection [3]. Raw data is converted into ASCII network 

packet information, which in turn is converted into connection level information. These connection 



level records contain within connection features like service, duration etc. Besides several machine 

learning techniques and artificial immune systems, several intelligent paradigms have been explored 

to create models to detect intrusions.  

1. Artificial neural networks (ANN) have been used both in anomaly intrusion detection as well 

as in misuse intrusion detection. The Bayesian Neural Network (BNN) is a powerful 

knowledge representation and reasoning algorithm under conditions of uncertainty [7]. A 

Bayesian network B = (N, A, Θ) is a Directed Acyclic Graph (DAG) (N, A) where each node 

n ∈ N represents a domain variable (e.g. a dataset attribute or variable), and each arc a ∈ A 

between nodes represents a probabilistic dependency among the variables, quantified using a 

conditional probability distribution (CP table) θi ∈ Θ for each node ni. 

2. Support vector machines (SVM) have proven to be a good candidate for intrusion detection 

because of its training speed and scalability [6].  

3. Several variants of evolutionary algorithms have been used for designing intrusion detection 

systems. Linear Genetic Programming (LGP) is a variant of the conventional Genetic 

Programming (GP) technique that acts on linear genomes. Its main characteristics in 

comparison to tree-based GP lies in that the evolvable units are not the expressions of a 

functional programming language (like LISP), but the programs of an imperative language 

(like c/c++) [8] .  In Multi Expression Programming (MEP) a chromosome encodes more 

than one problem solution. The chromosome fitness is usually defined as the fitness of the 

best expression encoded by that chromosome. 

4. Fuzzy logic has proved to be a powerful tool for decision making to handle and manipulate 

imprecise and noisy data. Two different types of fuzzy classifiers have been used. The first 

classifier (FR1) uses a histogram to generate an antecedent membership function and each 

attribute is partitioned into several fuzzy sets. Second method uses a rule generation based on 

partition of overlapping areas (FR2). The third method uses a neuro-fuzzy computing 

framework in which a fuzzy inference system is learned using neural network learning 



paradigms [8]. Readers are advised to refer to the author’s previous work for detailed 

information regarding the generation of fuzzy if-then rules [8].  

5. Multivariate Adaptive Regression Splines (MARS) is an innovative approach that automates 

the building of accurate predictive models for continuous and binary dependent variables [5]. 

It excels at finding optimal variable transformations and interactions, and the complex data 

structure that often hides in high-dimensional data.  

6. The swarm intelligence algorithm fully uses agents that stochastically move around the 

classification habitat following pheromone concentrations. Having that aim in mind, a self-

organized ANT colony based Intrusion Detection System (ANTIDS) is used to cluster the 

intrusion patterns [10]. 

7. Decision tree induction is one of the classification algorithms in the data mining. 

Classification algorithm is inductively learned to construct a model from the pre-classified 

data set. The inductively learned model of classification algorithm is used to develop IDS 

[2][7].   

8. Several hybrid approaches for modeling IDS have been also explored. Decision Trees (DT) 

and Support Vector Machines (SVM) are combined as a hierarchical hybrid intelligent 

system model (DT-SVM) [8]. 

9. An IDS based on general and enhanced Flexible Neural Tree (FNT) is explored by Chen and 

Abraham [9]. Based on the pre-defined instruction/operator sets, a flexible neural tree model 

can be created and evolved. The FNT structure is developed using an evolutionary algorithm 

and the parameters are optimized by particle swarm optimization algorithm. 

Sections 3 and 4 illustrates the empirical results obtained by using the above paradigms for designing 

intrusion detection systems. 

3.0  How Accurate IDS could be? 

The accuracy of the computational intelligent paradigms was verified by some simulations using the 

1998 DARPA intrusion detection evaluation program by MIT Lincoln Labs [4]. The LAN was 



operated like a real environment, but was blasted with multiple attacks. For each TCP/IP connection, 

41 various quantitative and qualitative features were extracted. The 41 features are labeled in order as 

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, AA, AB, AC, AD, AF, AG, 

AH, AI, AJ, AK, AL, AM, AN, AO and the class label is named as AP.  The data set contains 24 attack 

types that could be classified into four main categories. 

DoS: Denial of Service 

Denial of Service (DoS) is a class of attack where an attacker makes a computing or memory resource 

too busy or too full to handle legitimate requests, thus denying legitimate users access to a machine. 

R2L: Unauthorized Access from a Remote Machine 

A remote to user (R2L) attack is a class of attack where an attacker sends packets to a machine over a 

network, then exploits the machine’s vulnerability to illegally gain local access as a user. 

U2Su: Unauthorized Access to Local Super User (root) 

User to root (U2Su) exploits are a class of attacks where an attacker starts out with access to a normal 

user account on the system and is able to exploit vulnerability to gain root access to the system. 

Probing: Surveillance and Other Probing 

Probing is a class of attack where an attacker scans a network to gather information or find known 

vulnerabilities. An attacker with a map of machines and services that are available on a network can 

use the information to look for exploits.  

The designing of IDS involves training and testing phase. In the training phase, the different 

computational intelligence paradigms were constructed using the training data to give maximum 

generalization accuracy on the unseen data. The test data is then passed through the saved trained 

model to detect intrusions in the testing phase. This data set has five different classes namely Normal, 

Probes, DoS, R2L and U2R. A 5-class classification is performed to validate the accuracy of IDS. The 

detection accuracies (for test data set) for all the 13 different computational intelligence paradigms 

(presented in Section 2) are depicted in Table 1.  For MEP (as a sample), the false alarm rates are 

presented in Table 2.  The indices for a particular class of attack are determined as follows: True 



positive rate = (number of attack patterns correctly classified/total number of attack patterns). False 

positive rate = (number of non-attack patterns correctly classified/total number of non-attack 

patterns).  

Table 1. Performance comparison using full data set1 

Classification accuracies for different attack types  

Normal Probe DoS U2R R2L 

ANN 99.60 92.70 97.50 48 95.00 

BNN 99.57 99.43 99.69 64 99.11 

SVM 99.64 98.57 99.92 40.00 33.92 

DT 99.64 99.86 96.83 68.00 84.19 

LGP 99.73 99.89 99.95 64.00 99.47 

MEP 99.82 95.39 98.94 99.75 99.75 

FR1 40.44 53.06 60.99 66.75 61.10 

FR2 100.00 100.00 100.00 100.00 100.00 

FR3 98.26 99.21 98.18 61.58 95.46 

MARS 96.08 92.32 94.73 99.71 99.48 

ANTIDS 99.94 98.29 99.97 64.00 99.47 

DT-SVM 99.70 98.57 99.92 48.00 37.80 

FNT 99.19 98.39 98.75 99.70 99.09 

 

Table 2. False alarm rates 

False Alarm Rates  

Normal Probe DoS U2R R2L 

True + 0.9957 0.9471 0.9871 0.4000 0.9733 

False + 0.9989 0.982 0.9992 0.9997 1.0000 

4. Can Computational Intelligence Techniques Reduce Features? 

Most of the existing IDS examine all data features to detect intrusion or misuse patterns. Some of the 

features may be redundant or contribute little (if anything) to the detection process. Since the amount 

of audit data that an IDS needs to examine is very large even for a small network. Analysis is difficult 

                                                           
1 Readers may please refer to the references for more detailed results 



even with computer assistance because extraneous features can make it harder to detect suspicious 

behavior patterns. Complex relationships exist between the features, which are practically impossible 

for humans to discover. An IDS must therefore reduce the amount of data to be processed. This is 

extremely important if real-time detection is desired. Reduction can occur in one of several ways. 

Data that is not considered useful can be filtered, leaving only the potentially interesting data. Data 

can be grouped or clustered to reveal hidden patterns. By storing the characteristics of the clusters 

instead of the individual data, overhead can be significantly reduced. Finally, some data sources can 

be eliminated using feature selection. Features may contain false correlations, which hinder the 

process of detecting intrusions. Further, some features may be redundant since the information they 

add is contained in other features. Extra features can increase computation time, and can impact the 

accuracy of IDS. Feature selection improves classification by searching for the subset of features, 

which best classifies the training data. The features under consideration depend on the type of IDS, for 

example, a network based IDS will analyze network related information such as packet destination IP 

address, logged in time of a user, type of protocol, duration of connection etc. It is not known which 

of these features are redundant or irrelevant for IDS and which ones are relevant or essential for IDS. 

There does not exist any model or function that captures the relationship between different features or 

between the different attacks and features. If such a model did exist, the intrusion detection process 

would be simple and straightforward. In this paper we use data mining techniques for feather 

selection. The subset of selected features is then used to detect intrusions.  

Markov Blanket Modeling of Input Features 

Markov Blanket (MB) of the output variable T, is a novel idea for significant feature selection in 

large data sets. MB (T) is defined as the set of input variables such that all other variables are 

probabilistically independent of T. A general BN classifier learning is that we can get a set of features 

that are on the Markov blanket of the class node. The Markov blanket of a node n is the union of n’s 

parents, n’s children and the parents of n’s children. The formal definition is: 



The Markov blanket of a feature T, MB(T) of a BN.  the set of parents, children, and parents of 

children of T. MB(T) is the minimal set of features conditioned on which all other features are 

independent of T, i.e. for 

any feature set S, P(T | MB(T), S) = P(T | MB(T)). 

Knowledge of MB(T) is sufficient for perfectly estimating the distribution of T and thus for 

classifying T. In order to solve the feature selection problem, one could induce the BN that generates 

the data. This subset of nodes shields n from being affected by any node outside the blanket. When 

using a BN classifier on complete data, the Markov blanket of the class node forms feature selection 

and all features outside the Markov blanket are deleted from the BN [7].  

Decision Tree Learning and Feature Deduction 

Feature selection is done based on the contribution the input variables make to the construction of the 

decision tree. Feature importance is determined by the role of each input variable either as a main 

splitter or as a surrogate. Surrogate splitters are defined as back-up rules that closely mimic the action 

of primary splitting rules.  Suppose that, in a given model, the algorithm splits data according to 

variable ‘protocol_type’ and if a value for ‘protocol_type’ is not available, the algorithm might 

substitute ‘service’ as a good surrogate. Variable importance, for a particular variable is the sum 

across all nodes in the tree of the improvement scores that the predictor has when it acts as a primary 

or surrogate (but not competitor) splitter. Example, for node i, if the predictor appears as the primary 

splitter then its contribution towards importance could be given as iimportance. But if the variable 

appears as the n
th
 surrogate instead of the primary variable, then the importance becomes iimportance =  

(p
n
) * iimprovement in which p is the ‘surrogate improvement weight’ which is a user controlled 

parameter set between (0-1) [7]. 

Felxible Neural Trees (FNT) 

The mechanisms of input selection in the FNT constructing procedure are as follows. (1) Initially the 

input variables are selected to formulate the FNT model with same probabilities; (2) The variables 

which have more contribution to the objective function will be enhanced and have high opportunity 

to survive in the next generation by a evolutionary procedure; (3) The evolutionary operators i.e., 



crossover and mutation, provide a input selection method by which the FNT should select appropriate 

variables automatically [9].  

4.1. Feature Deduction Experiments 

A comparison between three different models for feature deduction using the same datasets 

mentioned in the previous section.  Markov blanket model algorithm helps to reduce the 41 variables 

to 17 variables. These 17 variables are A, B, C, E, G, H, K, L, N, Q, V, W, X, Y, Z, AD and AF.  

The important variables were also decided by their contribution to the construction of the decision 

tree. Variable rankings were generated in terms of percentages. We eliminated the variables that had 

0.00% rankings and considered only the primary splitters or surrogates. This resulted in a reduced 12 

variable data set with C, E, F, L, W, X, Y, AB, AE, AF, AG and AI as variables. 

FNT method helps to reduce the features as given below.  

Normal:  C, K, U, AN 

Probe:  A, C, L, R, T, U, W, Z, AA, AE, AK, AO 

DoS: A, H, J, K, P, Q, T, U, W, AB, AB, AC, AE 

U2R: K, N, Q, AB, AC, AF, AJ, AL 

R2L: A, C, K, L, M, R, T, W, Y, AL 

Table 3 provides a comparison between the three feature reduction methods for the test data set for 

detecting the different attacks.  

Table 3. Performance comparison using reduced dataset2 

17 variables 12 variables 4~13 variables Attack type 

BNN DT FNT 

Normal 99.64 100.00 99.19 

Probe 98.57 97.71 98.39 

DOS 98.16 85.34 98.75 

U2R 60.00 64.00 99.70 

R2L 98.93 95.56 99.09 

 

                                                           
2 Readers may please refer to the references for more detailed results 



5. Distributed Intrusion Detection System (DIDS) 

In Distributed IDS (DIDS) conventional intrusion detection system are embedded inside intelligent 

agents and are deployed over a large network. In a distributed environment, IDS agents communicate 

with each other, or with a central server. Distributed monitoring allows early detection of planned 

and coordinated attacks and thereby allowing the network administrators to take preventive measures. 

DIDS also helps to control the spreading of worms, improves network monitoring and incident 

analysis, attack tracing and so on. It also helps to detect new threats from unauthorized users, back-

door attackers and hackers to the network across multiple locations, which are geographically 

separated. In a DIDS it is important to ensure that the individual IDS are light-weight and accurate.  

A number of IDS have been proposed for a networked or distributed environment. Software agents 

have been proposed as a technology for intrusion detection applications. Rationale for considering 

agents in an IDS ranges from increased adaptability for new threats to reduced communication costs. 

Since agents are independently executing entities, there is the potential that new detection capabilities 

can be added without completely halting, rebuilding, and restarting the IDS. The autonomous agents 

have been used for data collection and analysis. Agents hosted on network nodes act as filters to 

extract pertinent data, transceivers to oversee agent operation, and monitors to receive reports from 

transceivers. These entities are organized into a hierarchical architecture with centralized control. 

Cooperating Security Managers (CSM) enable individual distributed intrusion detection packages to 

cooperate in performing network intrusion detection without relying on centralized control. Each 

individual CSM detects malicious activity on the local host. When suspicious activity is detected, each 

CSM will report any noteworthy activity to the CSM on the host from which the connection 

originated. The local CSM will not notify all networked systems, but rather only the system 

immediately before it in the connection chain. DIDS are simply a superset of the conventional IDS 

implemented in a distributed environment. Due to the distributed nature the implementation poses 

several challenges. IDS could be embedded inside agents and placed in the network to be monitored. 

The individual IDS may be configured to detect a single attack, or they may detect several types of 

attacks. Each network component may host one or many IDS. Since there will be a large number of 



flag generators (detection of an attack, event etc.), these must be abstracted, analyzed, and condensed 

by a suitable architecture before arriving a final conclusion. Very often there would be a centralized 

analyzing and control facility. The most popular architecture is the master-slave type which may be 

suitable for small networks. In a hierarchical architecture analysis and control are being done at 

different layers mainly because of the geographical distribution or due to the size of the network. 

Attacks/event detection information is passed to analyzer/controller nodes that aggregate information 

from multiple IDS agents. It is to be noted that the event information, which is detected by the IDS 

agents will follow a bottom up approach for analysis and the various command and control flow will 

follow a top-down approach. The physical location of IDS agents will be fixed since they monitor 

fixed network segments. In the case of hierarchical architecture, the analyzer/controller nodes may 

exist at many locations in the network since they receive their input and give their output via network 

connections. Depending on the network environment the communication between the different layers 

could be implemented as depicted in Figure 2.  

IDS IDS IDSIDS IDS

Analyzer / Controller Analyzer / Controller

Analyzer / Controller

IDS IDS IDS IDSIDS

Analyzer / Controller Analyzer / Controller

Analyzer / Controller

Analyzer / Controller

 

Figure 2. Hierarchical architecture with free communication between layers. 

In the hierarchical architecture, the Central Analyzer and Controller (CAC) is the heart and soul of 

the DIDS. The CAC usually consists of a database and Web server, which allows interactive querying 

by the network administrators for attack information/analysis and initiate precautionary measures. 

CAC also performs attack aggregation, building statistics, identify attack patterns and perform 

rudimentary incident analysis. The co-operative intelligent agent network is one of the most 



important components of the DIDS. Ideally these agents will be located on separate network 

segments, and very often geographically separated. Communication among the agents is done 

utilizing the TCP/IP sockets.  

Agent modules running on the host machines are capable of data analysis and to formulate adequate 

response action and are very often implemented as read only and fragile. In the event of tampering or 

modification the agent reports to the server agent and automatically ends its life. Agents residing in 

the individual analyzer/controllers consist of modules responsible for agent regeneration, dispatch, 

updating and maintaining intrusion signatures and so on. These agents control the individual IDS 

agents for monitoring the network, manage all the communication and life cycle of the IDS agents 

and also updates the IDS agents with detection algorithms, response and trace mechanisms. 

6. Discussions 

Effective intrusion detection and management systems are critical components of homeland security 

as they are in the forefront of the battle again cyber-terrorism.  This article was focused on three 

different perspectives in designing intrusion detection systems. (1) accuracy and false alarm rates (2) 

feature deduction and (3) implementation in a distributed environment. For real time intrusion 

detection systems, MEP/LGP would be the ideal candidate as it can be manipulated at the machine 

code level. These code based IDS not only provides high accuracy but also is light weight and we can 

easily implemented in a mobile agent environment which makes then ideal candidates in 

mobile/MANET environments. The functions developed for detecting the different attacks types using 

MEP is given below.  

Attack Developed function 

Normal L * log2(J + C) 

Probe (log2(B) < (fabs((AJ *AA) > (AA + AI { AH) ? (AI * AA): (AA + AI 

{AH)))? (log2(B)) : (fabs((AJ * AA) > (AA + AI {AH) ? (AJ * AA): 

(AA + AI {AH))) 

DOS 0.457 * (H + (ln(F)) * (lg(AO)) - - AN + W + H) 



U2R sin(N) - - AG 

R2L 0.36 + (K< 0.086? K: 0.086 + 0.086) > (F > (log2(log2(L * C))) 

? F : (log2(log2 (L * C)))) ? (K< 0.086 ? K: 0.086 + 0.086) : (F 

> (log2(log2(L * C))) ? F: (log2(log2(M*C)))) + F 

 

Overall, the fuzzy classifier (FR2) gave 100% accuracy for all attack types using all the 41 attributes. 

These type of IDS could be useful for conventional static networks, wireless base stations etc.  

8.0.  Conclusions 

With the increasing incidents of cyber attacks, building an effective intrusion detection model with 

good accuracy and real-time performance are essential. This field is developing continuously. In this 

article, we presented some of the computational intelligence paradigms which could be useful for 

designing accurate intrusion detection systems which could be also deployed in a distributed 

environment. 
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