
ORIGINAL ARTICLE

Segmentation of weather radar image based on hazard severity
using RDE: reconstructed mutation strategy for differential
evolution algorithm

Meera Ramadas1 • Millie Pant2 • Ajith Abraham3
• Sushil Kumar1

Received: 4 October 2016 / Accepted: 15 June 2017 / Published online: 26 June 2017

� The Natural Computing Applications Forum 2017

Abstract Weather describes the condition of our atmo-

sphere during a specific period of time, and climate rep-

resents a composite of day to day weather over longer

period of time. Climatology attempts to analyze and

explain the impact of climate so that the society can plan

accordingly. Climatology analysis is often done on radar

images representing various climatic conditions. These

images contain varying scale of severity for any specific

climatic parameter of study. The climatologists often find it

convenient to analyze climatic conditions if tools are

available to segment the weather images based on the

severity scale which is represented by different colors.

Segmentation of the weather radar image is also used for

automated analysis of weather conditions. Differential

evolution (DE) approach instead is used for fast selection

of optimal threshold. In present paper, we have applied DE

with multilevel thresholding for weather image segmenta-

tion which results in minimum computational time and

excellent image quality. A new mutation strategy for DE

named reconstructed differential evolution (RDE) strategy

is suggested for better performance over image segmenta-

tion. Using fuzzy entropy and RDE for multilevel thresh-

olding provides better results in comparison with last

suggested methods.

Keywords Radar � Satellite images � Multilevel

thresholding � Fuzzy � Mutation � Optimization � Severity

1 Introduction

Weather surveillance radar is used to locate the motion,

movement and type of precipitation. The weather radar

images provide a map view of reflected particles for specific

area around the radar. With the varying intensity of precip-

itation, different color codes are used for its representation.

With the help of these radar images, we can predict the cli-

matic conditions. High-resolution satellite images have

become a good source of information for weather forecast-

ing. Efficient extraction and processing of useful data can

improve the weather forecasting. By splitting the images

according to color code, the specific hazard type can be

viewed and depending on the intensity, the corresponding

alerts can be given to public for their safety.

Thresholding is a basic technique of image segmentation

which converts the image into foreground and background

images. Thresholding on colored images is done by

manipulating the color components based on color spaces.

Image thresholding is classified as unsupervised learning

and such issues can be solved using evolutionary algo-

rithms. The most robust evolutionary algorithm DE was

introduced by Storn and Price [1] algorithm that follows

the concepts of evolutionary algorithms like mutation,

selection and reproduction. DE remains straightforward,

stochastic, population-based algorithm that helps solving

optimization problem. The efficiency and performance of

DE are determined based on the control parameters and the

trial vectors generation strategy being used. Numerous

variants of DE are designed by changing these trial vector

strategy and control parameters. In DE algorithm, popula-

tion size, crossover constant and the mutation scale factor F

are the three control parameters being used.

Reconstructed differential evolution strategy (RDE)

uses three different mutation scale factors to help image
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segmentation efficiency. Suggested RDE strategy is com-

pared with the other classical variants to confirm better

efficiency. To verify the efficiency of RDE for image

thresholding, we have applied it on segmenting the weather

images based on specific climatic condition. Based on

fuzzy entropy, multilevel image thresholding is then used

along with the differential evolution approach to perform

the image segmentation. The first section of the paper

explains the concept of thresholding and entropy-based

thresholding. The second section details the differential

evolution approach and the proposed mutation strategy.

The rest explain the implementation of RDE in multilevel

thresholding and results.

2 Related literature study of thresholding using
evolutionary algorithms

Roula et al. [2] stated the problems of automatic segmenta-

tion of nuclei in histopathological images and for solving

global optimization problem, an active contour-based evo-

lutionary approach was proposed. Results show the effi-

ciency of themethod. Omran et al. [3] developed a clustering

method based on DE which applied to unsupervised classi-

fication and segmentation of images. Rahnamayan et al. [4]

introduced a new optimization-based thresholding approach

using differential evolution. This method performs better

than the Kittler algorithm of thresholding. Aslantas et al. [5]

explained the usage of different DE algorithms aimed at

segmenting the wounds on skin. Developed technique

removes the disadvantages of k-means clustering. Rahna-

mayan et al. [6] introduced micro-opposition-based DE

(micro-DE) which performs better than Kittler algorithm in

sixteen test images. Hasan et al. [7] aimed on pulling out

chain codes of thinned binary image using DE and PSO.

Milad et al. [8] introduced a blend of hierarchical evolu-

tionary algorithm (HEA) and multilevel thresholding algo-

rithm for segmenting magnetic resonance images. On the

basis of an automatic multilevel thresholding approach,

HEA uses an unsupervised clustering technique. The results

were evaluated, and performance was validated.

Kumar et al. [9] combined the Otsu method with differ-

ential evolution technique to select the optimum threshold

value. The results were verified by testing themethod on four

different images. Li et al. [10] on the basis genetic algorithm

for water area extraction during flood events and two-di-

mensional entropy introduced a type of image processing. In

the areas of water monitoring, this technique was found to be

quite efficient and reliable. Sarkar and Das [11] for

improving separation between objects presented a 2D his-

togram-based multilevel thresholding approach. The results

were found to be superior to the results achieved from 1D

histogram-based technique for bilevel thresholding.

Paul et al. [12] provided image compression technique

built on histogram for multilevel thresholding. Various

image quality techniques were used for image comparison.

Specific application of the method was also proposed.

Ochoa-Montiel [13] gave the thresholding of biological

images using multiobjective optimization technique. In the

paper, a combination of Shannon technique with Otsu

thresholding has been used for inter- and intra-class.

Results show less computational efforts for this technique.

Allaoui et al. [14] proposed a technique to solve thresh-

olding problem, initialization and sensitivity to noise. The

suggested method is on region growing and evolutionary

approach. The literature review provides works based on

evolutionary algorithm used on images are discussed.

Research is still going on to develop more robust and

efficient techniques based on evolutionary approaches to

solve optimization problems like image segmentation.

3 Multilevel image thresholding

Thresholding is the simplest technique of image segmen-

tation for gray scale image to create binary images. Des-

ignating separate RGB components of the image use for

color image thresholding. The various techniques used for

thresholding are: histogram shape, entropy, clustering- and

attribute-based method, local method and spatial method.

Depending on number of image segments, thresholding

is of two types called bilevel and the multilevel. In the case

of bilevel thresholding, the image segmentation is done in

two different regions. Threshold level is defined by the

term ‘T.’ One region holds the pixel having gray value

larger than ‘T,’ and the other region holds gray values

lesser than ‘T.’ The first region is known as object pixels,

and the other is known as background pixels. In multilevel

thresholding, the foreground and background objects are

segregated into non-overlapping sets which aids in seg-

menting the gray scale image into different sections. It is a

type of clustering technique in which the gray level sam-

ples are grouped into two sections as background and

foreground. In this method, different values are assigned

between different ranges of threshold levels. The number

of thresholds is stated in advance.

Texture of the input image can be characterized by using

a statistical measure of randomness called entropy. Entropy

of an image can be expressed as:

Entropy ¼ �
Xm

j

pj � log2ðpjÞ: ð1Þ

Here, pj is the probability of j and m in gray scale level

becoming equal to the difference in-between two neigh-

boring pixels. Entropy of an image provides the level of
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information for the study of image. Low entropy has little

contrast between pixels and large run of pixels. Run is the

sequence of pixels of same color. So, in low entropy, the

sequence of pixels with same color will be more. Images

with low entropy have lesser information and can be easily

compressed. A flat image has zero entropy. High entropy

has very high contrast between pixels and cannot be

compressed as low entropy images.

The measure of uncertainty and entropy over a fuzzy set

of an image is referred as fuzzy entropy. Consider an image

Y of size I � J. Fuzzy entropy of an image is denoted as:

Fuzzy entropy ¼ 1

IJ ln 2

XI

i¼1

XJ

j¼1

SnðlYðyijÞÞ; ð2Þ

where lYðyijÞ represents the measure of a property of

image like pixel brightness and Sn denote the Shannon’s

function denoted as:

SnðlYðyijÞÞ ¼ �lYðyijÞ ln lYðyijÞ
� ð1� lYðyijÞÞ lnð1� lYðyijÞÞ:

ð3Þ

If the fuzzy entropy is larger, greater will be the infor-

mation within that fuzzy set. Y is then segmented into

background and object pixels using the fuzzy threshold b:

yij ¼
0 yij\b

255 yij � b

�
; ð4Þ

where i ¼ 1; 2; 3; . . .I and j ¼ 1; 2; 3; . . .j In this paper,

we have used fuzzy entropy-based technique to perform the

thresholding of the color image.

4 Classical DE algorithm

A defined number of vectors are evolved over time from a

search space of n-dimensions of likely solutions to derive

local minima of the objective function. A specified number

of vectors being obtained over time within the search space

are arbitrarily recognized. DE use population of NP can-

didate’s solution designated as Xi;j where i ¼ 1; 2; . . .NP

where index i signify population and G symbolizes gen-

eration of population. Differential evolution algorithm

depends on the three operations: mutation, selection and

reproduction.

Mutation It determines the weighted difference among

the vectors in population. For any specified parameter Xi;G,

we are arbitrarily choosing three vectors Xr1;G; Xr2;G and

Xr3;G such that r1; r2; r3 are dissimilar. Then, the donor

vector Vi;G is computed as:

Vi;G ¼ Xr1;G þ F � ðXr2;G � Xr3;GÞ: ð5Þ

Here, the mutation factor F is a constant within [0,1].

Crossover This process also termed as recombination

comprises of effective solutions into the population. Trial

vector Ui;G is aimed at target vector Xi;G with binomial

crossover. Within a probability Cr 2 ½0; 1�, the component

of donor vector moves into trial vector. Crossover proba-

bility Cr is selected along with population size NP� 4.

Uj;i;Gþ1 ¼ Vj;i;Gþ1 if randi;j½0; 1� � or if j ¼ Irand:
Xj;i;Gþ1 if randi;j½0; 1� � or if j 6¼ Irand:

�

ð6Þ

Here, randi;j 	 [ ½0; 1� and Irand being the random inte-

ger within 1; 2; . . .N.
Selection Population proposed for succeeding generation is

selected from vectors within the current population and the

successive trial vectors. Target vector Xi;G is harmonized

with trial vector Vi;G with the smallest value of function

and is incorporated in resulting generation.

Xi;Gþ1 ¼ Ui;Gþ1 if f ðUi;Gþ1Þ� f ðXi;GÞ where i ¼ 1; 2; . . .N
Xi;G otherwise:

�

ð7Þ

Mutation, crossover and selection operations will con-

tinue till some ending criteria stands attained.

5 RDE mutation strategy

In RDE, the mutation strategy has three control parameters:

a constant parameter F, a variable N1 and N2, where N2 is a

complement value ofN1. Both variablesN1 andN2 have the

value (0, 1), one will be generated randomly and second will

take a complement value of the first variable. By involving

the best solution vector, proposed strategy coincides faster

as compared to the traditional strategies which have only

random vectors. This strategy also uses variables

XG
r1; X

G
r2; X

G
r3 which are chosen at random. The parameter F

known as mutation factor takes a constant value between (0,

1). The usage of mutation factor F has been used in tradi-

tional strategies also. As we are taking three different control

parameters, the value of donor vector is improved greatly. In

this strategy, the weighted difference of solution vectors is

found using N1 and N2. The difference of these values is

obtained, and the weighted difference of this value is added

to the solution vector. As the mutation strategy of DE is

changed by using three control parameters, RDE is a hybrid

of classical DE algorithm. By changing the mutation strat-

egy of the traditional DE algorithm with RDE, the efficiency

of the classical DE algorithm is improved. The proposed

strategy is given as:

Vi;G ¼ XG
r1 þ F � ðN1� ðXG

best � XG
r2Þ � N2� ðXG

best � XG
r3ÞÞ:
ð8Þ
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By increasing the number of control parameters to three,

the convergence speed is increased profoundly and avoids

premature convergence. Also, these control parameters

prevent the RDE algorithm from collecting the neighbor-

hood of global best individuals. As there are three different

control parameters, the value of donor vector is improved

greatly and hence the efficiency of RDE algorithm is

enhanced profoundly in comparison with classical DE

algorithm.

6 Experimental results

RDE was executed on i7 core processor, 64-bit operating

system via MATLABr2008b to perform a relative analysis

to original DE algorithm. Five different traditional muta-

tion strategies of DE algorithm are considered for com-

paring the results and for showing the exact information.

Fifteen standard functions are considered, and the results

from various mutation strategies are obtained by fitting the

value-to-reach and number of iterations. Value-to-reach

(VTR) is referred to as global minimum or maximum for a

function to stop the optimization if it is reached. The results

are tabularized for evaluation with the prevailing

algorithms.

On the basis of the best value subsequent to 50 runs

(vtr = 1.e-015):

A relative investigation was executed, and in-depth

study was performed on individual method. By assigning

the size and value-to-reach (VTR), the best value, number

of function evaluation (NFE) and the CPU time of diverse

function approaches were recorded. RDE gave best value

for greatest number of standard functions. The best results

obtained for each benchmark functions are indicated in

bold format. To perform the statistical analysis on the

results from Table 1, Friedman’s test was implemented and

the values obtained were formulated. Table 2 denotes the

results attained from the test, and Table 3 depicts the rank

of the various mutation strategies used based on best value

obtained.

Tables 2 and 3 show that RDE has significant perfor-

mance in comparison with the existing mutation strategies.

The rank obtained based on best value is comparatively

better for RDE. These rankings obtained based on Freid-

man’s test justify the efficiency of RDE strategy.

7 Multilevel thresholding with RDE strategy

In the paper, we have introduced the DE approach to fuzzy

entropy-based thresholding. In this approach, we have used

the RDE mutation strategy for DE as given in Eq. 8. Using

Eq. 2, the fuzzy entropy provides the fitness function

meant for the DE algorithm. The flowchart for the proposed

work is given in Fig. 1.

8 Test results on image thresholding

The proposed RDE strategy was combined with the

fuzzy entropy approach to perform multilevel image

thresholding. This method was applied on two sets of

weather radar images. The results obtained were com-

pared with the results obtained from multilevel thresh-

olding using classical DE approach. Higher the entropy,

better the information captured in the image. The

entropy value obtained for RDE is better than the value

obtained using classical DE. Optimal threshold value

and CPU time taken for segmentation of image 1 and 2

are better for RDE. Hence, the quality of segmented

image is better for RDE than the classical DE. The

improvement in quality of image is due to the inclusion

of new control parameters in DE algorithm which

resulted in creation of the new hybrid RDE. The values

for threshold, entropy and CPU time are computed and

tabulated in Table 4. The original image and the images

after thresholding using DE and RDE technique are

shown in Figs. 2 and 3. The overall results obtained

demonstrate the proposed RDE strategy gives improved

results for multilevel thresholding in comparison with

classical DE approach.

The above results clearly indicate that the values

obtained for RDE strategy-based thresholding is much

better compared to the results obtained using DE strategy.

Two sample weather radar images were taken from www.

wunderground.com, and the multilevel thresholding was

performed on these images. The image after thresholding

was segmented based on the specific hazard severity.

Samples of rainfall image and snowfall results obtained are

given in Figs. 2 and 3.

Color enhancements are seen in a radar image to help in

interpretation. The specific colors are compared with the

standard color bar to identify the hazard severity. Different

colors on the image depict different intensities of the

weather condition. The violet/pink color bar shows the

extreme weather condition of snow, rain or hail in an area.

The red color bar shows an intense weather condition. The

yellow color bar shows a very heavy precipitation level,

and the green color bar shows heavy condition. Light blue

color bar shows moderate climatic conditions. By cluster-

ing the images separately according to the specific hazard

severity, it is easy to identify and predict the specific

weather condition across the plains.
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From the above resultant images, it is easy to identify

the regions of extreme and intense weather conditions. In

the original image, it is not very easy to see at a glance if a

case of extreme condition is occurring on any specific land

area. After separating the images based on color bar, the

area for extreme and intense conditions is identified easily.

In Fig. 4, for example, the image for extreme condition

shows only pink on the corresponding effected area,

Table 2 Statistical analysis using Friedman’s test of RDE

N 50

Chi-sq 23.47

Df 5

Asymptotic significance 0.0003

Table 3 Ranks of the different strategies with RDE

Strategies Mean rank on best value

DE/best/1 2.8

DE/rand/1 3.1

DE/best-to-rand/1 2.71

DE/best/2 4.13

DE/rand/2 5.1

RDE 2.83

Read the image

Initialize the number of thresholds required

Calculate the threshold value and apply it on 
image

Apply RDE approach with fuzzy entropy

Compute the histogram value of the image 
and fitness function using fuzzy entropy

Display the resultant image after thresholding

Fig. 1 Flow chart for multilevel thresholding using RDE
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Fig. 3 Original and threshold image of sample image 2

Fig. 2 Original and threshold image of sample image 1

Fig. 4 Sample image 2 segmented based on hazard severity

Table 4 Values obtained from

images after thresholding
Image Methods used Entropy value Threshold value CPU time

Image 1 DE-based thresholding 0.98 0.38 12.43

RDE-based thresholding 0.99 0.42 11.7

Image 2 DE-based thresholding 0.803 0.48 17.02

RDE-based thresholding 0.818 0.49 14.3
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whereas for moderate condition the image easily depicts

that no region on the map is having that specific climatic

condition (Fig. 5).

9 Conclusion

Herein the proposed work, reconstructed mutation strategy

was implemented in DE algorithm and results being com-

pared to prevailing mutation strategies. The comparative

study shows better results for RDE. RDE applied to mul-

tilevel thresholding based on fuzzy entropy. The thresh-

olding results were found to be better for RDE strategy in

comparison with classical DE approach. The threshold

image was further segregated based on the specific hazard

level. From our study, it is seen that RDE strategy performs

much better in comparison with other strategies. Currently,

the strategy has been applied for weather forecasting. An

extension of the work can be done to apply this technique

for medical image processing, land topology, image

enhancement and other image processing areas.
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