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Differential evolution algorithm has seen various changes through numerous researches. Performance of
the various algorithms depends on the changes in mutation and crossover strategies. Here in this paper,
we are proposing a new variant of differential evolution named Forced Strategy Differential Evolution
(FSDE), by creating a new mutation strategy. This strategy uses two parameters for mutation: a constant
parameter and a variable parameter. FSDE will be applied on clustering using the k means technique.
Experiments were conducted for various standard benchmark functions. FSDE was compared with the
classical DE, GA and PSO in the field of clustering and the cluster quality results are tabulated. The results
obtained show that the strategy implemented is more efficient than the other mutation strategies.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the ever evolving and rapid progress in the area of
research, the amount of data that needs to be processed or pro-
duced has increased multi fold. With this increase in the data col-
lection arise major challenges in the field of data mining. Data
mining or knowledge discovery is the technique of identifying
the data from various aspects and then properly categorizing these
data information. The data mining software analyses the relation-
ships and patterns that exist within the data. Traditionally data
mining technique has been classified under two types namely
supervised learning and unsupervised learning. Supervised learn-
ing technique is used for classifications and predictions whereas
unsupervised learning techniques are those in which no predic-
tions or classifications are possible. Clustering of data is an unsu-
pervised learning technique. Cluster analysis is an emerging area
of interest to many researchers in the field of data mining. Cluster-
ing divides data into useful and meaningful groups called clusters.
The main aim of clustering is that the objects or data in a group
should be similar to one another and dissimilar to the objects in
the other group. Clustering determines the intrinsic grouping
within a collection of unlabelled data. It is a major method for sta-
tistical data analysis to be used in the field of machine learning,
pattern recognition, image processing, data compression and infor-
mation retrieval. Jain (2010) has summarized clustering technique
and the various methods used. Clustering of data plays a vital role
in efficient data mining, voice recognition, web mining, market
analysis etc. Fast and accurate clustering of data plays an impor-
tant role in the field of automatic information retrieval system. It
is considered as a multi objective optimization problem. It involves
an iterative task of trial and error. Clustering can be classified as
hard clustering and soft clustering. In hard clustering, each object
belongs to one cluster or does not belong to any cluster. In soft
clustering or fuzzy clustering, each object may belong to more than
one cluster (Bezdek et al. (1984)). Clustering algorithm can be cat-
egorized into hierarchical and partitional algorithms. In hierarchi-
cal clustering, a hierarchy of partitions is constructed and a
dendogram representation is created. In this technique, each parti-
tion is grouped within the partition of next level in the hierarchy.
In partitional clustering, a single partition is constructed with a
given number of non-overlapping clusters. The main disadvantage
of partitional clustering is to find partition of data with a specified
number of clusters which minimizes within cluster differences.
Partitional algorithms are iterative and usually converge to local
minima.

The simplest and most popular partitional clustering algorithm
is the k-means technique which was coined by MacQueen (1967).
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Here a given set of N data are partitioned into k different clusters.
Grouping of data is done by minimizing the Euclidian distance
between the data and centroid. It is one of the simplest unsuper-
vised learning algorithms used for clustering. This algorithm is sig-
nificantly sensitive to initial randomly selected centroid. Result of
k means algorithm depends on the initial mean values and so fre-
quently suboptimal partitions are found. As k means algorithm
may converge to suboptimal partitions, some stochastic optimiza-
tion approach is used to avoid this situation and thereby to find a
globally optimum solution. Such problems can be solved using the
evolutionary algorithm. Coello et al. (2002) stated that evolution-
ary algorithmworks in a robust and efficient manner for clustering.
Evolutionary algorithm, which is a part of evolutionary computing,
uses biological methods of reproduction, recombination, mutation
and selection. Storn and Price (1997) introduced differential evolu-
tion (DE) algorithm which follows the concepts of the evolutionary
algorithm. DE is simple, stochastic algorithm based on the popula-
tion that help to solve optimization problems. The effectiveness
and performance of DE is determined by the control parameters
and test vector generation strategy. Many variants are designed
by changing these strategies and control of test vector parameters.

The aim of this paper is to present a variant of differential evo-
lution approach .This approach is then combined with k-means to
be applied on to a clustering problem. The first section of the paper
discusses the basic clustering approach. The second section deals
with the explanation on differential evolution technique. The third
section introduces the readers to the variant of DE algorithm
named as Forced Strategy Differential Evolution (FSDE). The exper-
imental results obtained from FSDE are explained in the successive
sections. Then a detailing is done on the implementation of FSDE
and other evolutionary algorithms on k means approach for apply-
ing on data clustering.

2. Related works on evolutionary algorithms in clustering

Applying the concept of evolutionary computing to clustering
problem has been the topic of research for a long time. Numerous
variants of evolutionary algorithms like DE, GA, PSO were created
and these variants were applied to the clustering problems.
Paterlini and Thiemo (2004) gave a performance comparison on
genetic algorithm (GA), PSO and differential evolution (DE) for a
medoid evolutionary clustering approach. The results showed that
DE approach was far superior compared to GA and PSO and that DE
should be considered over the other algorithms for clustering.
Zaharie (2005) studied the applicability of crowding differential
evolution to unsupervised clustering. This approach allows the
identification of clusters of arbitrary shapes using multi centre
descriptions for them. Abraham et al. (2006) describes a novel
approach for partitioning text document into clusters using an
improved version of classical differential evolution. A modified
mutation scheme was introduced to improve convergence proper-
ties. This modified DE was then used for clustering text document
for retrieving important information. A new validation index was
also proposed for high dimensional document clustering problems
by modifying the CS measure. This technique was shown to be
superior in speed and quality of clustering. Zhang and Sanderson
(2007) showed that implementation of DE is mostly based on
crossover probability and mutation factor. Changes done to these
parameters will affect the performance of DE.

Zhang et al. (2008) also proposed an advanced PSO and differen-
tial evolution method for spatial clustering with obstacle con-
straints (SCOC). The proposed method showed better
quantization error and constringency speed. Indrajit et al. (2009)
proposed an application of differential evolution to fuzzy cluster-
ing for categorical data sets. The proposed algorithm effectively
optimizes the fuzzy c-medoids error function globally. Maulik
and Indrajit (2010) devised a modified differential evolution (DE)
based-fuzzy c-mediod (FCMdd) clustering of categorical data set.
This technique shows the superiority of integrated clustering and
supervised learning approach. Maulik et al. (2010) also proposed
a new real – coded modified differential evolution based automatic
fuzzy clustering algorithm that automatically calculates the num-
ber of clusters and the proper partition from a data set. In this
paper, the assignment of points to different clusters is based on a
Xie-Beni index which considers the Euclidian distance.

Alguliev et al. (2011) proposed a document summarization
model which separates the key sentences from the given document
while removing the redundant information in the summary. The
results show that the proposed method was superior to the earlier
summarization models. Pham et al. (2011) introduced a new
approach to cluster datasets of mixed data type. RANKPRO (ran-
dom search with k prototype) combined the bees algorithm with
the k prototype. RANKPRO algorithm proved to be more efficient
than the k prototype approach. Suarez-Alvarez et al. (2012) intro-
duced a unified statistical approach to normalize all attributes of
mixed datasets. Clustering of several standard datasets is also per-
formed in this paper. Qu et al. (2012) gave a neighbourhood muta-
tion strategy and combined it with various niching differential
evolution (DE) algorithms to solve multimodal optimization prob-
lems. This technique has faster convergence with higher accuracy.
The mutation strategy in this technique was able to generate a
stable niching behaviour and was able to locate and maintain mul-
tiple global optima.

Hatamlou (2013) devised a new heuristic method inspired from
the black hole phenomena. The experimental results showed that
the technique outperformed the existing classical methods. This
method was applied to the field of clustering. Saha and
Bandyopadhyay (2013) devised a newmultiobjective (MO) cluster-
ing technique (GenClustMOO) which can automatically partition
data into appropriate clusters. The effectiveness of the method
was compared against k means and single linkage method. Singh
and Saha (2014) gave a solution to clustering after analysing and
removing the drawbacks of Euclidean distance and point symme-
try based distance measures and merging the improved versions
into one method to get best of both methods. This method speeds
up the computation time. Thein et al. (2015) proposed differential
evolution for clustering and compares its purity with k-means
algorithm. The results were tested on medical datasets of Pima,
Liver and Heart from UCI data repository. According to the results
obtained, DE outperformed the k means algorithm for medical
datasets. This work shows that DE performs better when robust
clustering is needed. This work also eliminates the disadvantages
of mean technique. Mukherjee et al. (2016) gave a modified version
of differential evolution for solving dynamic optimization prob-
lems (DOP) efficiently. The algorithm was named as Modified DE
with Locality induced Genetic Operators (MDE-LiGO) and it inte-
grates changes in three stages of classical DE framework. Wu
et al. (2016) devised a multi-population based approach to achieve
a unit of multiple strategies. The resulting new variant named
multi-population ensemble DE (MPEDE) consists of three mutation
strategies. Ramadas et al. (2016) introduced a strategy a hybrid
technique of differential evolution and Flower Pollination Algo-
rithm (ssFPA/DE). The results were tabulated and efficiency of
the new approach was justified.
3. Data clustering approach

Clustering is of two types: hard clustering and soft clustering. In
hard clustering, each data is a member of one cluster. In soft clus-
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tering or fuzzy clustering, each data may belong to multiple
clusters.

One of the most popularly used hard clustering approaches is
the k means algorithm. The standard algorithm for k- means was
proposed by Stuard Lloyd in 1982. The aim of this algorithm is to
find the best partition of n entities into k groups or clusters in such
a way that the total distance between the group members and its
centroid are minimized. It iterates between updating the assign-
ment of data to clusters and updating cluster’s summarization or
centres. In this technique, k centroids are initialized. These centers
are chosen at random initially. Then, each point is assigned to the
nearest centroid by calculating the Euclidean distance between the
centroid and the data point. Euclidean distance is the geometric
distance in the multidimensional space. K means algorithm always
use Euclidean distance to calculate the closeness between the cen-
troid and data. It is computed as:

distanceðx; yÞ ¼
X
i

ðxi � yiÞ2
( )1

2

ð1Þ

where xi, yi are the two points between which the distance has to be
calculated. Now new centers are calculated for each group. If there
is a change in the centroid assignment, again the distance from each
data to the new centroid is calculated. These are iteratively per-
formed until there is no change in the centroid. The flowchart for
data clustering using k means algorithm is depicted in Fig. 1. Sup-
pose we have k clusters where c = 1, 2, . . . k. Let the data set be X
where X ¼ x1; x2; . . . xn and set of centers be denoted as V where
V ¼ V1;V2; . . .Vc . The centroid of the cluster is calculated as:

Vi ¼ 1=ci
Xci
j¼1

xj ð2Þ

where ci is the number of data points in the ith cluster.
The basic algorithm for k means is given as below:

Select k points as the initial centres.
Repeat until centres do not change:
Form k clusters by grouping data near the centroid to its cor-
responding cluster.
Start

Start

K centroids are taken at random 

Recalculate new centroid

Assign data to the corresponding cluster 
based on distance calculated

Calculate distance from each data to 
the centroid

Ini�alize number of clusters as K

Change in 
centroid

Figure 1. Flowchart for k means algorithm.
Recalculate the centroid for each cluster.
End loop.

K means algorithm is easy to implement and computationally
fast. Fong et al. (2014) stated the main drawback of this technique
is that there is no surety of finding global optima. Classical k means
algorithm randomly assigns initial point and usually finds a local
optimum clustering result. So, it needs a global optimized algo-
rithm to remove the defects of k-means technique. Differential
evolution technique is a simple heuristic technique for global opti-
mization proposed by Storn and Price (1997). DE algorithm has
strong global search ability, higher accuracy and slower conver-
gence speed while k means clustering algorithm has faster conver-
gence speed. Combining k means algorithm with differential
evolution stabilizes the local and global search. K means algorithm
finds its application in various fields of feature learning, cluster
analysis and vector quantization.

4. Differential evolution algorithm

DE uses a population of NP candidate solutions denoted as Xi,G

where i ¼ 1;2 . . .NP where index i denote population and G repre-
sents generation of the population. Differential evolution algo-
rithm depends on three operations mainly mutation, selection
and reproduction.

Mutation: This operator makes DE different from other Evolu-
tionary algorithms. It computes the weighted difference between
the vectors in population. Mutation process starts by selecting
three individuals at random from the population. This operation
extends the workspace. For a given parameter Xi,G we are randomly
selecting 3 vectors Xr1;G;Xr2;G and Xr3,G such that r1; r2; r3 are dis-
tinct. Then the donor vector Vi,G is computed as:

Vi;G ¼ Xr1;G þ F � ðXr2;G � Xr3;GÞ ð3Þ
where, i ¼ 1 . . .NP, r1; r2; r3 2 f1; . . . ;NPg are randomly selected and
satisfy: r1–r2–r3–i, F 2 ½0;1�, F is the control parameter for muta-
tion proposed by Storn and Price (1997). Here F is a constant from
[0, 1]. Mutation function demarcates one DE scheme from another.

Crossover: This process also called as recombination incorpo-
rates successful solutions into the population. The trial vector Ui,G

is created for the target vector Xi,G through binomial crossover. Ele-
ments of donor vector enter trial vector with probability Cr 2 ½0;1�:
Cr is the crossover probability which is selected along with popula-
tion size NP P 4.

Uj;i;Gþ1 ¼ Vj;i;Gþ1 if randi;j½0;1� 6 Cr or if j ¼ Irand
Xj;i;Gþ1 if randi;j½0;1� > Cr or if j–Irand

�
ð4Þ

Here rand i,j � [½0;1� and Irand is random integer from 1,2 . . . N.
Selection: This operation differs from the selection operation of

other evolutionary algorithms. Here the population for next gener-
ation is selected from vectors in current population and its corre-
sponding trial vectors .The target vector Xi,G is compared with
the trial vector Vi,G and the lowest function value is taken into next
generation.

Xi;Gþ1 ¼ Ui;Gþ1 if f ðUi;Gþ1Þ 6 f ðXi;GÞ where i ¼ 1;2; . . .N
Xi;G otherwise

�
ð5Þ

Mutation, crossover and selection operations are continued
until some stopping criteria are reached.

5. Proposed variant of differential evolution

A new strategy has been proposed for mutation called FSDE. As
it involves the best solution vector XG,best, it coincides faster as
compared to the traditional strategies which has only random vec-



Table 2
Test statistics using Friedman’s test.

N 25
Chi sq 23.6
Df 5
Asymptotic Significance 0.0003

Table 3
Ranks of the diverse strategies.

Strategies Mean rank on best value

DE/best/1 2.6
De/rand/1 3.2
DE/best-to-rand/1 2.8
De/best/2 4.3
DE/rand/2 5.1
FSDE 2.9
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tors. Here, two control parameters are being used. The parameter F
known as mutation factor takes a constant value while the new
parameter N takes a varying value which lies between (0,1).The
parameter F uses the constant value of 0.6 in our proposed tech-
nique so that the value of donor vector lies between the allowable
range. As we are taking two different control parameters, the value
of donor vector is improved greatly and hence the efficiency of DE
algorithm is enhanced profoundly. The proposed strategy is given
as:

Vi;G ¼ Xr1;G þ N:ððXG;best � Xr2;GÞ � F:ðXG;best � Xr3;GÞÞ ð6Þ
Here the random selection of base vector prevents the strategy

from becoming greedy in nature.

6. Test problem

The above stated hybrid algorithm FSDE was implemented on i7
core processor, 64 bit operating system with 12 GB RAM using
MATLABr2008b and a comparative result was obtained with the
original DE algorithm. The traditional mutation strategies were
replaced with the proposed mutation strategy and FSDE was com-
posed. In the experiment conducted, mutation constant F is given
the value 0.6 and the crossover probability Cr is given the value
0.8. We have taken fifteen different functions and calculated the
results by fixing the value to reach and number of iterations. The
maximum number of iterations is fixed as 5000 and the maximum
number of evaluations as 5,000,000. The value to reach (VTR) is the
global minimum or maximum of the function or it is a value to stop
the optimization if it is reached. We have tabulated various results
by fixing the dimension as 25 and 50. The results are tabulated for
comparison with the existing algorithms. The column named sig-
nificance shows if the result obtained for FSDE is better than the
other strategies. Few of the results obtained are given in Table 1.
Table 1
Best value for different functions.

Function D VTR DE

DE/best/1 DE/rand/1 DE/best-

Sphere 50 1.e�015 9.73e�016 6.9e�016 7.532e�
25 1.e�015 9.34e�015 9.35e�015 9.539e�

Beale 50 1.e�015 3.265e�016 2.318e�016 3.713e�
25 1.e�015 4.26e�015 7.72e�015 1.125e�

Booth 50 1.e�015 3.497e�016 2.0514e�016 6.0738e�
25 1.e�015 1.807e�015 7.55e�016 1.95e�0

Schwefel 50 1.e�015 �1.8e+003 �2.253e+003 �7.8403
25 1.e�015 �4.22+002 �4.8e+002 �1.67e+

Michlewicz 50 1.e�015 �7.6399e+00 �7.214e+00 �7.39e+
25 1.e�015 �7.69e+00 �7.64e+00 �6.87e+

Schaffer N.2 50 1.e�015 6.6e�016 8.88e�016 4.43e�0
25 1.e�015 1.33e�015 1.33e�015 6.66e�0

Schaffer N.4 50 1.e�015 3.05e�015 2.9e�001 2.92–001
25 1.e�015 2.92e�001 2.92e�001 2.92e�0

HimmelBlau 50 1.e�015 1.6e�016 8.05e�016 3.83e�0
25 1.e�015 4.83e�015 4.42e�015 1.902e�

Bird 50 1.e�015 �1.035e+002 �1.067e+002 �1.05e+
25 1.e�015 �9.303e+001 �1.04e+002 �1.066e

Extended cube 50 1.e�015 3.31e�015 4.98e�005 6.1e�00
25 1.e�015 5.701e�008 5.212e�005 7.1003e�

Ackeley 50 1.e�015 7.19e�015 6.46e�012 7.99e�0
25 1.e�015 7.99e�015 5.02e�015 7.99e�0

Gold 50 1.e�015 3.00e+00 3.00e+00 3.00e+00
25 1.e�015 3.00e+00 3.00e+00 3.00e+00

Griewank 50 1.e�015 9.99e�016 9.99e�016 1.6e�01
25 1.e�015 1.477e�002 9.214e�015 7.88e�0

Rastrigin 50 1.e�015 1.79e+001 1.23e+002 7.47e+00
25 1.e�015 3.61e+001 1.181e+002 8.17e+00

Rosenbrock 50 1.e�015 9.6e�016 1.07e�008 7.88e�0
25 1.e�015 3.98e+00 1.403e�008 6.9e�01

The values highlighted show the overall best values of each function.
Based on Best Value (vtr = 1.e�015):
A comparative analysis was performed and study was done on

each technique. By setting the value-to-reach (VTR) as e�015
and dimension as 25 and 50, the best value, number of function
evaluation (NFE) and the CPU time of different function strategies
are calculated. In some functions, the results are good for both clas-
sical DE and proposed algorithm. The overall result obtained shows
that the FSDE approach is performing better than the classical DE
approach. The Friedman statistical test runs are conducted on FSDE
algorithms to validate the results. Based on the values from Table 1,
the Friedman test was applied and the results are tabulated in
Table 2. The ranks obtained after the Friedman test is tabulated
in Table 3.
Significance

to-rand/1 De/best/2 DE/rand/2 FSDE

016 9.655e�016 7.17e+0 6.04e�016 +
015 9.42e�015 6.92e+000 8.9e�016 +
016 7.587e�016 7.725e�016 5.95e�016 �
015 1.36e�017 7.5e�015 3.6e�016 �
016 7.0792e�016 8.35e�016 3.28e�016 �

15 2.75e�015 6.47e�015 9.4e�016 �
e+001 �1.38e+003 �1.66e+003 �4.56e+003 NA
003 �4.47e+003 �1.5e+003 �2.5e+003 NA
00 �6.959 e+00 �6.847 e+00 �7.34e+00 NA
00 �7.35e+00 �6.98 e+00 �7.1e+00 NA
16 6.55e�016 8.87e�016 2.22e�016 +
16 5.3e�015 1.33e�015 0 �

2.93e�001 2.89e�001 2.82e�001 +
01 2.92e�001 2.92e�001 2.92–001 NA
16 9.12e�016 1.46e�016 3.35e�016 �
015 3.95e�015 5.14e�015 1.59e�015 +
002 �1.065e+002 �1.03e+002 �1.029e+002 NA
+002 �1.034e+002 �1.04e+002 �1.06e+002 NA
8 1.93e�005 2.68e+00 5.46e�008 +
008 1.73e�005 2.92e+009 5.86e�007 �

15 3.63e�013 3.09e+00 7.99e�015 �
15 3.59e�013 3.213e+00 4.4e�015 +

3.00e+00 3.00e+00 3.00e+00 NA
3.00e+00 3.00e+00 3.00e+00 NA

3 6.56e�013 1.07e+00 7.77e�015 �
15 5.07e�009 1.06e+00 9.9e�016 �
1 1.28e+002 1.52e+002 2.98e+001 NA
1 1.727e+002 1.674e+002 0 NA
16 3.9e�009 1.07e+005 1.107e+001 �
5 1.56e�011 7.15e+004 8.5e�016 �
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7. Proposed variant in clustering

This section discusses the implementation of the mutation vari-
ant of DE in clustering using the k means algorithm. Each record in
a dataset is handled as random sample of population under consid-
eration. Now consider that these datasets are clustered to k ran-
dom groups. Partitions of the data set are carried out on the
basis of certain objective functions. This is a feature that opts to
an optimization problem to minimize or maximize the function
from a set of given available alternatives. This function determines
howwell the chosen solution performs. The fitness of each solution
is performed by calculating the squared error function between
centroid and entity point which is defined as:

FitnessðCÞ ¼
Xk

j¼1

Xn
i¼1

jjx j
i � c jjj2 ð7Þ

where x j
i is the entity point, cj is the centroid and jjx j

i � c jjj gives the
distance between the centroid and the entity point. Then for each k
groups, centroid is selected arbitrarily. Using Euclidean distance
method, distance is calculated for each data from its corresponding
centroid in the group. K-means algorithm terminates if there is no
change in centroid allocated. Result of the k-means algorithm is
used as one of the elements of DE algorithm while the rest of the
elements are initialized randomly. FSDE algorithm performs the
proposed mutation and crossover function. If the resultant value
obtained has better cost function, then the resultant value replaces
the least fit value in the population. The FSDE algorithm terminates
No

No

Cluster data into k grou

Initialize k cluster centres randomly fro

Perform FSDE algorithm with the
function

Termination 
condition

Recalculate the new cluster centre 
clusters

Compare cost function of trial 
population if condition satisfies 

Calculate cost function for e

Change in clust
centre 

Assign objects to the closest cluster 
the Euclidean distance between the en

Start

Figure 2. Flow chart for var
if the maximum iteration is exceeded. Fig. 2 shows the flow chart
for the clustering technique using the variant of DE.

8. Experimental results on clustering

Here, the experiment was conducted on five standard datasets
with numeric data to compare the performance of the k means
algorithm, Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and classical DE with FSDE in clustering. The k means algo-
rithm of clustering was incorporated with GA, PSO, classical DE and
DE with FSDE for performing the data clustering. The clustering
algorithms were implemented on i7 core processor, 64 bit operat-
ing system with 12 GB RAM using MATLABr2008b and a compara-
tive result was obtained for the various algorithms. The
corresponding cluster graph and curve graph for each dataset were
obtained. The cluster quality of the clusters obtained was com-
pared. Five real time datasets from UCI repository of machine
learning database Blake et al. (1998) are used. The datasets used
are described below:

(a) Fisher Iris dataset (n = 150, d = 4, k = 3): This is a standard
dataset with 150 inputs for 3 different flower types: sentosa,
virginica and versicolour. Here 4 different features of flower
are measured: type, petal width, sepal width and sepal
length.

(b) Morse dataset (n = 1296, d = 5, k = 4): This dataset consists of
36 rows and 36 columns representing the morse code for let-
ters from A–Z and numbers from 0 to 9. Each letter or num-
Yes

Yes

ps

m the group

 proposed mutation

Stop

for each group of 

state and replace in 

ach solution

er 

centre by calculating 
tity point and centre

iant of DE in clustering.



Figure 5. Clusters after applying classical DE.
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ber is represented with a dash or dot. Morse code consists of
5 elements: short mark, longer mark, intra character gap,
short gap and medium gap.

(c) Hogg dataset (n = 30, d = 6, k = 4): This dataset is a lab based
report of bacteria counts in different shipment of milk. Here,
6 sets of bacteria count are taken from 5 different shipments
of milk.

(d) Weather dataset (n = 60, d = 5, k = 4): This is an unsupervised
dataset obtained from lab test. It describes main characteris-
tics of weather database for 5 different attributes: outlook,
temperature, humidity, windy and play.

(e) Stock dataset (n = 950, d = 10, k = 4): This is a real dataset
obtained from simulated stock returns. Here the stock
returns for 10 different companies are being considered in
this dataset.

These datasets were used as input for clustering and results
were obtained for various algorithms under consideration. The
cluster graph and curve graph for the iris data set have been given
below. Figs. 3–6 shows the cluster obtained after performing
genetic algorithm, PSO, DE and FSDE respectively for the iris data-
set. The x-axis shows the petal length and y-axis shows the petal
width of the iris data set. Figs. 7–10 shows the curve graphs
obtained during clustering using genetic algorithm, PSO, DE and
Figure 3. Clusters after applying genetic algorithm.

Figure 4. Clusters after applying PSO.
FSDE for the iris dataset. In these graphs, the x-axis shows the
number of iterations and y-axis shows the best cost obtained at
each iteration.
Figure 6. Clusters after applying FSDE algorithm.

Figure 7. Curve graph for genetic algorithm.



Figure 9. Curve graph for FSDE.

Figure 10. Curve graph for classical DE.

Figure 8. Curve graph for PSO.
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8.1. Cluster quality

Quality of the clusters obtained can be compared based on the
following parameters:
8.1.1. Intra cluster distance
This calculates the distance of the members in the cluster. It

is calculated as the sum of squares of distance from the mem-
bers of each cluster to its centroid. Minimum intra cluster dis-
tance gives good clusters. The formula for intra cluster distance
is given as:

intra ¼
Xk

j¼1

x j
i � c2j ð8Þ

where x j
i � c j is the distance between particles and centroid .Lower

the intra cluster distance value, better the cluster formed. The com-
parative results obtained for mean of intra cluster distance is given
in Table 4.

8.1.2. Inter cluster distance
It calculates the distance of all the pairs of centroid of different

clusters. It is the sum of squares of distance between each cluster
centroid. The formula is given as:

inter ¼ minðci � cjÞ2 ð9Þ
Here ci and cj are the centroids of cluster i and j. Maximum inter

cluster distance, better the cluster formed. The comparative results
obtained for mean of inter cluster distance of the various algo-
rithms is given in Table 5.

8.1.3. Quantization error
Vector quantization divides large set of data into clusters having

almost same number of points closest to them. Goal of vector
quantization is to reduce the average quantization error. The for-
mula for quantization error Qe is given as:

Qe ¼
Xk

j¼1

Xn

i¼1

jjx j
i � c jjj2=Nj

" #,
k ð10Þ

where, cj is centroid of cluster j, Nj is number of particles of clus-

ter j, jjx j
i � c jjj is the distance between particles and centroid.

Lower the quantization error, better is the cluster formed. The
result obtained for quantization error is tabulated in Table 6.

8.1.4. Execution time
It is the total time taken for the execution of task. Lower the

execution time, better the cluster. Execution time for the various
algorithms is shown in Table 7.

8.2. Validation index

There are various quantitative evaluation techniques available
to test the cluster quality and these are known as validation index.
It is used as a tool by researchers to test the cluster result. Internal
quality compares different set of clusters without reference to
external knowledge. A good clustering technique has high within
cluster similarity and low inter cluster similarity. Here, we will
be calculating two validation indexes: Davies Bouldin (DB) index
and Calinski Harabasz (CH) index.

8.2.1. Davies Bouldin (DB) index
It is a matrix for evaluating the cluster algorithm. It is a function

of ratio of sum of intra- distances to inter distances (Davies and
Bouldin, 1979). If Ri,j be the measure of clustering scheme, Mi,j is
the separation between i and j cluster and Si is the within cluster
scatter for cluster I, then the DB index is defines as the ratio of Si
and Mi,j which follows the following properties:

1. Ri;j P 0:
2. Ri;j ¼ Rj;i



Table 4
Comparative table for mean intra cluster distance.

Data sets Mean intra cluster distance

K means GA PSO Classical DE FSDE

Morse (k = 4) 16.01 16.17 19.467 18.803 16.07
Iris (k = 3) 43.7 48.24 45.78 22.24 20.34
Hogg (k = 4) 120.1 122.3 146.66 107.08 99.04
Weather (k = 4) 169983.2 170500.6 181200.7 170400.84 169772.8
Stockreturns (k = 4) 2011 2134 2345.7 2256.8 1693.03

Table 5
Comparative table for mean inter cluster distance.

Data sets Mean inter cluster distance

K means GA PSO Classical DE FSDE

Morse (k = 4) 230.12 224.14 159.12 241.9 277.55
Iris (k = 3) 3851.3 4015.72 4037.6 4144.86 5781.3
Hogg (k = 4) 4245.2 4542.57 3158.7 4527.9 4549.71
Weather (k = 4) 34567834.2 36725821.4 30251191.2 36689042.51 36798677.6
Stockreturns (k = 4) 12876.22 11660.32 18330.7 13,206 26,889

Table 6
Comparative table for quantization error.

Data sets Quantization error

K means GA PSO Classical DE FSDE

Morse (k = 4) 4.03 4.04 4.86 4.7 4.01
Iris (k = 3) 14.03 16.08 15.25 7.41 6.78
Hogg (k = 4) 28.7 30.57 36.65 26.7 24.76
Weather (k = 4) 42567.2 42625.15 45300.17 42600.2 42443.2
Stockreturns (k = 4) 530.3 533.5 586.4 564.2 423.2

Table 7
Comparative table for execution time.

Data sets Execution time

K means GA PSO Classical DE FSDE

Morse (k = 4) 14.8 25.1 24.3 17.3 15.46
Iris (k = 3) 12.4 25.018 15.34 25.03 14.33
Hogg (k = 4) 24.1 25.54 26.34 26.77 24.7
Weather (k = 4) 46.3 55.34 56.67 60.65 48.7
Stockreturns (k = 4) 14.32 16.45 15.56 36.53 15.32
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3. When Si P Sj and Mi;j ¼ Mi;k then Ri;j > Ri;k.
4. When Si ¼ Sj and Mi;j 6 Mi;k then Ri;j > Ri;k.

Here, lower the value of DB index, better the separation and
closeness of the data inside the cluster. The formula for DB index
is given as:

DB ¼ 1
k

Xk

i¼1

maxi–j
dðxiÞ � dðxjÞ

dðci; cjÞ
� �

ð11Þ

where, k is number of clusters, i, j are cluster labels, dðxiÞ and d
(xj) are all samples in cluster I and j to respective cluster centroids
dððci; cjÞÞ is the distance between these centroids.

The comparative results obtained for the DB index for the vari-
ous algorithms are tabulated in Table 8.
8.2.2. Calinski Harabasz (CH) index
It is another method for calculating cluster quality. It is used to

evaluate the optimal number of clusters (Caliński and Harabasz,
1974). Higher the value of CH index, the better the cluster that is
formed. The formula for CH index is given as:

CH ¼ traceðSBÞ
traceðSWÞ :

np � 1
np � k

ð12Þ

where SB is between cluster scatter matrix, SW is the internal scatter
matrix, np is the number of clustered samples and k is the number of
clusters. The comparative results obtained for the CH index is given
in Table 9.
8.3. Graphical representation

The above tabulated values of Cluster Quality and Validation
index have been depicted graphically. Figs. 11 and 12 depict the
curve graphs that show the performance curve for execution time
in cluster quality and CH index in validation index. The x-axis rep-
resents the different datasets used and y- axis represents the value
obtained. The line graph shows that the values obtained for the
FSDE is significantly better than the values obtained from classical



Table 8
Comparative table for DB index.

Data sets DB index

K means GA PSO Classical DE FSDE

Morse (k = 4) 1.20 1.22 1.19 1.23 1.12
Iris (k = 3) 0.63 0.78 0.68 0.64 0.61
Hogg (k = 4) 0.432 0.43 0.45 0.41 0.40
Weather (k = 4) 0.41 0.45 0.38 0.35 0.34
Stockreturns (k = 4) 3.24 4.34 4.23 4.54 2.16

Table 9
Comparative table for CH index.

Data sets CH index

K means GA PSO Classical DE FSDE

Morse (k = 4) 0.78 0.67 0.67 0.64 1.065
Iris (k = 3) 0.32 0.22 0.301 0.21 0.34
Hogg (k = 4) 0.17 0.168 0.23 0.20 0.26
Weather (k = 4) 0.144 0.146 0.133 0.143 0.148
Stockreturns (k = 4) 2.12 2.0484 2.01 1.075 2.48
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Figure 12. Curve for execution time.
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DE approach. The values have been recorded for five different
datasets.
9. Conclusion

In this research paper, a variant of the mutation strategy of dif-
ferential evolution named FSDE is proposed and is applied to k
means technique of data clustering. The results obtained show that
the variant created is more efficient than the classical schemes of
DE and the results are significantly good for clustering application.
This method is used for clustering only dataset. Further extension
of the work can be done in the field of image and text. Also, FSDE
technique is applied only to k means technique of clustering. Fur-
ther extension of the work can be done in applying FSDE to other
techniques of clustering like hierarchical agglomerative method,
DBSCAN method etc.
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