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Abstract: This paper proposes a dual-channel network of a sustainable Closed-Loop Supply Chain
(CLSC) for rice considering energy sources and consumption tax. A Mixed Integer Linear Program-
ming (MILP) model is formulated for optimizing the total cost, the amount of pollutants, and the
number of job opportunities created in the proposed supply chain network under the uncertainty of
cost, supply, and demand. In addition, to deal with uncertainty, fuzzy logic is used. Moreover, four
multi-objective metaheuristic algorithms are employed to solve the model, which include a novel
multi-objective version of the recently proposed metaheuristic algorithm known as Multi-Objective
Reptile Search Optimizer (MORSO), Multi-Objective Simulated Annealing (MOSA), Multi-Objective
Particle Swarm Optimization (MOPSO), and Multi-Objective Grey Wolf (MOGWO). All the algo-
rithms are evaluated using LP-metric in small sizes and their results and performance are compared
based on criteria such as Max Spread (MS), Spread of Non-Dominance Solution (SNS), the number
of Pareto solutions (NPS), Mean Ideal Distance (MID), and CPU time. In addition, to achieve better
results, the parameters of all algorithms are tuned by the Taguchi method. The programmed model is
implemented using a real case study in Iran to confirm its accuracy and efficiency. To further evaluate
the current model, some key parameters are subject to sensitivity analysis. Empirical results indicate
that MORSO performed very well and by constructing solar panel sites and producing energy out of
rice waste up to 19% of electricity can be saved.

Keywords: agricultural products’ supply chain optimization; mathematical modeling; metaheuristic
algorithms; multi-objective optimization

1. Introduction

In recent years, Agricultural Supply Chain (ASC) management has been the focus
of many researchers due to its limited shelf life and the variety of demand and cost [1].
Moreover, the concept of sustainability in the logistics of these products with the goal to
consider the environmental, economic, and social dimensions has been simultaneously
set forth as another significant issue in the world [2,3]. Sustainable agriculture provides a
potential solution to enable agricultural systems to feed a growing population within the
changing environmental conditions [4].
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Besides the concept of sustainability, today, electronic commerce (E-commerce) is
remarkably influencing supply chain management and involves such benefits as ensuring
products are up-to-date, pricing information, boosting communications speed, and so
on [5,6]. For this reason, it has attracted lots of customers [7]. Figure 1 displays some
of the reasons for consumers to shop online (www.smartinsights.com (accessed on 3
March 2022)).
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The agricultural products industry involves the most practical and challenging appli-
cations in this field. Among such products, rice is a product consumed as the main part
of meals in most parts of the world. Over half of the world population feeds on this basic
grain, and this product plays a critical role in boosting the economies of the producing
nations [8]. In 2018, global rice production was 782 million tons, 50% of which belonged to
China and India, as depicted in Figures 2 and 3 (www.fao.org (accessed on 3 March 2022)).

In addition to consuming rice as a main meal, the bran is widely utilized in the
production of toiletry and pharmaceutical industries. Rice straw can also be used in the
production of bio-energy and compost [9] (see Figures 4 and 5).

Most of the rice-producing countries suffer heavy and frequent losses in crop harvest
because of poor maintenance of technologies, inefficient supply chains, and farmers’ inca-
pability to market the products. In research conducted by the World Bank and FAO, it has
been claimed that, on average, around 8% to 26% of the rice produced in developing nations
is destroyed due to poor facilities and post-harvest problems (www.fao.org (accessed on 3
March 2022)).
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In addition, the rice-processing industry is heavily dependent on energy consumption.
With environmental concerns such as greenhouse gas emissions, there is an urgent need
to switch to non-carbon, renewable, and clean energy sources such as solar and biomass
energy for rice processing [10]. Recent studies revealed that rice waste such as the husk and
straw has great potential for electricity generation [8]. Instead of being disposed, rice waste
that is properly used can bring about positive environmental effects (see Figures 6 and 7).
Selecting an optimal combination out of traditional and renewable energy sources for rice
production and processing can slightly lower some of the energy supply problems in this
area [11].
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Besides supplying energy sources, another important issue that decision-makers and
managers may run into when designing a rice supply chain network is the uncertainty
of decision making. Uncertainty influences the composition and coordination of the rice
supply chain and may take place in several ways, such as the uncertainty in supply and
demand. Under real-world conditions, rice supply and customer demand are some of the
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most common uncertain parameters due to the lack of sufficient information. The high
uncertainty level in the supply chain brings about a challenging situation for predicting
the future. Fuzzy logic is one of the approaches that is effectively modeling the parameter
under uncertainty. The results indicate that fuzzy optimization is a proper option for
decision making under uncertainty due to its potential to deal with uncertainty [7].

Pursuant to the mentioned subjects, in this study, optimizing the dual-channel CLSC
network of rice is investigated while considering energy sources. Hence, a Mixed Integer
Linear Programming (MILP) model is formulated for optimizing the total costs, the quan-
tity of pollutants, and the number of job opportunities created in the proposed logistics
network under uncertainty over the cost of purchase and supply and demand. The model
aims to locate the proper sites for the construction of solar panels and bio-refineries and
to determine the optimal product flow and its waste among the network facilities and the
inventory level during each period while considering sustainability factors. Furthermore,
fuzzy logic is applied for dealing with uncertainty. After that, four multi-objective meta-
heuristic algorithms, i.e., MORSO, MOSA, MOPSO, and MOGWO, are used to solve the
model, and their results and performance are compared based on several criteria. Finally,
the programmed model is implemented on a real case study in Iran in order to verify its
accuracy and efficiency. The novel aspects reported in this paper are mainly as follows:

â Considering the energy sources are rarely observed in the ASC optimization models,
in this paper, a sustainable double-channel CLSC network for rice product considering
energy sources and tax on energy consumption is designed. Then, a new MILP model
is formulated for optimizing the total costs, the quantity of pollutants, and the job
opportunities created in the rice CLSC in a fuzzy environment.

â After that, to solve the model and find the Pareto solutions, a new multi-objective
version of the recently released algorithm termed Multi-Objective Reptile Search
Optimizer (MORSO) is employed to solve the proposed model in high dimensions.
Next, its results and performance are compared to MOSA, MOGWO, and MOPSO
based on criteria such as MS, SNS, MID, and CPU time.

The present paper is organized into six sections. In the continuation, the literature is
reviewed in Section 2. The problem and the mathematical model are stated in Section 3.
The solution approach is addressed in Section 4. The proposed model’s accuracy is verified
by implementing it onto a real case study in Iran in Section 5. Moreover, the metaheuristic
algorithm parameters are tuned and the results of solving the model are analyzed and com-
pared. For further analyzing the model, sensitivity analysis is run on the key parameters.
The conclusions and suggestions for research development are presented in Section 6.

2. Literature Review

As stated before, producing rice is both economically and socially critical for most rice-
producing countries. However, there are few studies related to the logistics optimization
of this product. Thus, in this section, the studies performed on supply chain optimization
of other agricultural products are reviewed in order to discover the existing research gap.
Therefore, the published papers related to this area are reviewed in two sub-sections called
ASC optimization and ASC sustainability.

2.1. ASC Optimization

As mentioned in the prior sections, agriculture is one of the most salient sectors
influencing the economies of many countries. As a result, many researchers have made
efforts to enhance the logistics management of agricultural products using novel methods
such as operational research. One of the primary studies on programming models in
ASC was conducted by [12]. They conducted research on various agricultural products,
both perishable and non-perishable, and vegetables. The authors of [13] addressed the
production and distribution of perishable products and presented a mathematical model
for optimizing the product’s quality and freshness.
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The author of [14] presented an integrated model for investment-related decision-
making in the fruit and vegetable industry. The authors of [15] proposed a transportation
programming model for a fruit supply chain in which a fruit logistics center was established
by various storage centers to meet demand during the non-harvest seasons. The authors
of [16] proposed a mathematical model for optimizing the cost of purchasing, transporting,
and storing fresh agricultural products. They tested the performance of their proposed
model on a real case study in an apple juice factory.

The authors of [17] presented a multi-period, non-linear mathematical programming
model for optimizing the transportation and operational costs in the logistics system of
wheat. The authors of [18] developed a new mathematical model with the goal of reducing
the costs of citrus CLSC and maximizing responsiveness to customers’ demand in forward
and reverse flow. The work in [19] designed a logistics network for a wheat supply chain
and proposed a mathematical programming model for minimizing the total costs under
demand uncertainty. They used robust optimization to deal with uncertainty.

The authors of [20] presented a non-linear mathematical model for optimizing the
costs and the total profit of an agricultural logistics network. They employed several
metaheuristic algorithms such as NSGA-II, MOICA, and MOPSO. In other research, the
authors of [21] presented a mathematical model for optimizing the costs in a rice supply
chain network. They applied some well-known metaheuristic algorithms for solving the
proposed model. Their derived results denoted the proposed model and their solution
methods as being valid, practical, and effective.

The authors of [22] developed a novel CLSC network for walnut product. Then, they
formulated an MILP model for minimizing the total costs of the proposed network. In
addition, they used several metaheuristic algorithms for solving the presented model. Their
results indicated their solution approach and the model being valid. Developing a CLSC
network for the avocado industry was another study in [23]. An MILP mathematical model
was formulated for optimizing the total costs and the number of the job opportunities
created in the proposed network. They employed exact methods to solve the presented
model. The authors of [24] developed a multi-echelon supply chain network for the
sugarcane industry. Following that, they formulated an MILP mathematical model to
minimize the total network costs, and due to its NP-hard nature, they applied some hybrid
metaheuristic algorithms to solve it. Their results revealed the efficiency of the model and
the solution approach.

2.2. ASC Sustainability

In recent years, the sustainability concept in supply chains, especially the logistics of
agricultural products, has appealed to many researchers. The environmental and social
effects of producing and consuming agricultural products have led the decision-makers
toward sustainable management, and several related studies have been performed by
researchers. For instance, the authors of [25] presented a two-objective mathematical
model to minimize demand overruns and to maximize profits in a pear logistics network.
They used a lexicographic method to solve their model. The authors of [26] presented a
sustainable, multi-objective MILP mathematical model for optimizing the CLSC network
of mushroom production by considering a variety of recycling technologies. Their results
revealed that using technology increases the overall profit by up to 12% and reduces
emissions by about 28%. The authors of [27] presented a mathematical model for a wheat
supply chain network, pursuing the goal of optimizing the total costs (including the fixed
costs for selecting the suppliers and locating the warehouses and the variable costs for
maintenance, transportation, and production). They employed GAMS software for solving
the model, the results of which indicated that their proposed model can be used in making
decisions about wheat import and distribution.

The authors of [28] proposed a multi-objective MILP model for optimizing wheat
production in Spain while considering the environmental impacts.
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The authors of [29] analyzed the agro-food supply chain design, focusing on the
sustainable dimensions in their multi-objective model. The work in [30] presented a multi-
objective non-linear programming model for the sustainable supply chain of perishable
agro-food products produced through organic and non-organic methods. Their goal was to
strike a balance between the production and consumption of the organic and non-organic
products and reduce the costs, lower environmental degradation, and increase the levels of
consumer health, wherein they used the Epsilon constraint method to solve the model.

The work in [31] presented a mathematical programming model with the goal of
optimizing the costs in an apple supply chain and investigated the environmental effects in
their network.

The work in [2] designed an MILP model to optimize the costs, meet the demand,
and reduce CO2 emissions in a citrus CLSC network. Moreover, they employed three
metaheuristic algorithms called MOTGA, NRGA, and NSGA-II. Their results and analysis
suggested MOTGA outperformed in this regard.

The authors of [32] prepared a multi-objective mathematical programming model for
optimizing the costs, water consumption, and the number of job opportunities created in a
wheat logistics network under demand uncertainty. Next, they used a simulation approach
for estimating the demand. The authors of [33] presented a bi-objective mathematical
model for optimizing the profit and the quantity of the pollutants in a green pistachio
supply chain. In their model, the demand and costs were assumed as uncertain. They
used a robust possibilistic programming model to deal with uncertainty. In addition, they
employed the Epsilon constraint method to solve the model. The work in [27] proposed
a multi-objective MILP model to optimize the costs and the quantity of the pollutants
emitted in a date supply chain. They used the LP-metric method and some metaheuristic
algorithms to solve the model.

2.3. Research Gap and Motivation for Research

In the current study, in order to come across the study gap, we analyzed several
papers about ASC optimization. A brief review of some related studies is given in Table 1.
Briefly, by investigating the mentioned papers in the table above, it can be concluded
that few papers have been published about rice logistics optimization. Furthermore, the
sustainability dimensions in ASC optimization have rarely been considered concurrently.
The agricultural sector, on the one hand, has enormous environmental effects and plays a
critical role in climatic changes, water scarcity, land degradation, deforestation, and other
processes, and on the other hand, the income of many rural people depends on it and
the sector provides several job opportunities for them. Thus, considering the economic,
environmental, and social factors simultaneously and creating a trade-off among them
greatly help to improve the ASC network, particularly for rice, an issue that has rarely been
analyzed. Besides the sustainability concept, uncertainty has seldom been considered in
the optimization models in the agricultural sector. Undoubtedly, the supply chain of agri-
cultural products is challenging, with various uncertainties in the real world, and therefore
it is necessary to employ proper approaches for modeling under uncertain conditions for
successful optimization and effective decision making in the supply chain.

Furthermore, considering the energy sources is rarely observed in ASC optimization
models. There is no doubt that the processing of agricultural products, especially rice,
in various processes, including its own processing, requires electrical energy. Processing
stages are significantly energy-consuming, which exerts environmental effects. Thus, it
urgently necessitates employing renewable and clean energy sources for rice processing.
As a result, selecting an optimal combination of traditional and renewable energy used
for processing can boost energy efficiency and mitigate the environmental consequences.
To the best of our knowledge, the present study is one of the first papers that introduces
a mathematical model with the goal of optimally using rice waste and properly locating
solar panel sites and bio-refineries for minimizing the fixed and operational costs intending
to generate electricity.
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Table 1. Some papers published in the scope of ASC.

Authors Model Objectives Uncertainty
Period Online

Purchase
Energy
Source

Case
Study

Solution
MethodSingle Multi

[15] LP Minimizing the
transportation costs * Fruit Exact

[29] LP

Minimizing costs
Minimizing water consumption,

CO2 emissions, and
destructed jobs

*
An agro-

food
company

AHP

[18] MILP
Minimizing total cost
Maximizing demand

responsiveness
* Citrus Meta-

heuristics

[21] MILP Minimizing total cost * Rice Meta-
heuristics

[19] MILP Minimizing total cost Robust * Wheat Exact

[2] MILP

Minimizing CO2 emissions
Minimizing total cost
Maximizing demand

responsiveness

* Citrus Meta-
heuristics

[34] MILP Minimizing total cost * Wheat Benders
decomposition

[32] MILP Minimizing total cost
Minimizing water consumption Simulation * Wheat Goal pro-

gramming

[34] MILP Minimizing total cost * Wheat Benders
decomposition

[33] MILP Maximizing total profit
Minimizing CO2 emissions Roust fuzzy * Pistachio Epsilon

constraint
[35] MILP Minimizing total cost * Crops Lingo

[22] MILP Minimizing total cost * Walnut Meta-
heuristics

[24] MILP Minimizing total cost * Sugarcane Meta-
heuristics

[23] MILP Minimizing total cost
Maximizing the created jobs * Avocado

Meta-
heuristics
and Exact

The
present
study

MILP
Minimizing total cost

Maximizing the created jobs
Minimizing CO2 emissions

Fuzzy * * * Rice
Meta-

heuristics
and Exact

The asterisk means the model is single period or multi period.

Moreover, when investigating the relevant studies, the traditional and online chan-
nels in the ASC network design have rarely been analyzed. Today, with the expansion
of E-commerce, most consumers are increasingly becoming fond of purchasing agricul-
tural products online. The online purchase of agricultural products has attracted many
researchers due to advantages such as more competitive prices, timely purchase, easy
product delivery, and fast product delivery [36].

In order to bridge the research gap in this study, we introduce a dual-channel CLSC
network, including the traditional and online purchasing of rice, while taking into account
the energy sources. Then, we present a three-objective mathematical model for optimizing
the costs, the quantity of the emitted pollutants, and the number of job opportunities
created in the rice supply chain network in a fuzzy environment. Next, the designed
model is solved via some multi-objective metaheuristic algorithms and their results and
performance are compared. Furthermore, using a case study in Iran, the accuracy of the
programmed model is surveyed. In the following sections, the problem model and its
solution method are presented and described.

3. Problem Statement

In this section, the logistics network and the proposed mathematical model for optimiz-
ing the objectives are described. The proposed multi-period network in Figure 8 involves
the producers (farmers), the distribution centers, the solar panel sites, the bio-refineries,
the rice factories, the warehouses, the markets (retailers), the customers, and the toiletry
and pharmaceutical industries. In this network, the farmers harvest rice in two periods
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and transfer the unprocessed rice (paddy) from farms to the distribution centers. Moreover,
rice harvest-produced waste, i.e., the straw, is transferred to the recycling centers and
bio-refineries to produce compost and convert it into electricity, respectively. The paddy
from the farmers is transferred to the distribution centers in two months because the harvest
is completed in two months at a maximum level. Furthermore, the maximum shelf life
of rice in the distribution centers is 6 months and, from there, it is transferred to the rice
factories for processing. Figure 9 depicts the production and processing stages of rice. As
rice processing requires a lot of electricity, some points have been considered as potential
sites for constructing solar panels and bio-refineries with the goal of supplying energy.
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Moreover, rice processing-induced waste, i.e., rice husk, is transferred to the bio-
refineries due to its potential to generate electricity. Ultimately, both the processed rice and
the bran are dispatched from the factory to both the markets and directly to the consumers
to satisfy their demand. As observed in Figure 8, a dual channel was introduced in the
proposed supply chain network in which the customers can purchase rice and bran both
online and directly from the warehouse and from the market in a traditional manner. Some
rice bran can also be sent to the toiletry and pharmaceutical industries. It is worth noting
that the location of all facilities except for the new distribution centers, the new recycling
centers, the solar panel sites, and the bio-refineries, is fixed. The goal behind this model is
to appropriately locate the construction of solar panels, the bio-refineries, and the recycling
centers to create a balance among the total cost, the quantity of the pollutants, and the
number of the job opportunities created by considering the energy sources in the network
so that the consumers’ demand is met. The indicators, the parameters, and the variables of
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decision making are presented in the Appendix A, and here, the mathematical model is
explained. The proposed model’s assumptions are the following:

• Transportation costs between the network facilities are consistent with the distance.
• Processing centers have limited storage capacity.
• Deficiency cost has not been considered.
• Rice production capacity in factories is also limited.
• Excess electrical energy should be connected to the mains (grid) electricity.

3.1. Problem’s Model

After describing the offered problem and assumptions, the expanded multi-objective
mathematical model is formulated as the following:

Min z1 = ∑
r∈R

∑
c∈C

∑
t∈T

∑
p∈P

∼
prmpmt × Xgprct + ∑

f∈F
∑
c∈C

∑
t∈T

∑
p∈P

∼
pr fp f t × X fp f ct (1a)

+ ∑
j∈J2

f cjj × wj + ∑
s∈S

f css × vs + ∑
b∈B

f cbb × zb + ∑
o∈O2

f coo ×Qo (1b)

+CTV × (∑
i∈I

∑
j∈J

∑
t∈T

disaij × Xaijt+ ∑
j∈J

∑
f∈F

∑
t∈T

disbj f × Xbj f t+

∑
f∈F

∑
v∈V

∑
t∈T

disc f v × Xc f vt+ ∑
f∈F

∑
k∈K

∑
t∈T

disd f k × Xd f kt+ ∑
p∈P

∑
f∈F

∑
m∈M

∑
t∈T

dise f m × Xep f mt

+ ∑
p∈P

∑
f∈F

∑
c∈C

∑
t∈T

dis f f c × X fp f ct+ ∑
p∈P

∑
m∈M

∑
c∈C

∑
t∈T

disgmc × Xgpmct+ ∑
o∈O

∑
i∈I

∑
t∈T

dishoi × Xhoit

+∑
i∈I

∑
o∈O

∑
t∈T

disiio × Xiiot + ∑
b∈B

∑
i∈I

∑
t∈T

disjib × Xjibt + ∑
f∈F

∑
b∈B

∑
t∈T

disk f b × Xk f bt)

(1c)

+ ∑
i∈I

∑
t′∈T

cpai × Xqit′+∑
j∈J

∑
t′∈T

cpajt × Xhjjt+∑
i∈I

∑
o∈O

∑
t∈T

cpco × Xhoit′ (1d)

+ ∑
r∈R

∑
t∈T

c̃taxr × XSert + ∑
f∈F

∑
p∈P

∑
r∈R

∑
t∈T

c̃ptp f r × Xrh f prt (1e)

Min z2 = ∑
b∈B

πbb × Zb + ∑
u∈U

πuu ×Vu + ∑
o∈O2

πoo ×Wo + ∑
f∈F

∑
p∈P

∑
r∈R

∑
t∈T

πpp × Xrh f prt (2a)

+∑
i∈I

∑
j∈J

∑
t′∈T

ϕ× RF× (∑
i∈I

∑
j∈J

∑
t′∈T

disaij×
Xaijt′
capv + ∑

j∈J
∑

f∈F
∑

t∈T
disbj f ×

Xbj f t
capv

+ ∑
f∈F

∑
v∈V

∑
t∈T

disc f v ×
Xc f vt
capv + ∑

f∈F
∑

b∈B
∑

t∈T
disd f k ×

Xd f kt
capv + ∑

p∈P
∑

f∈F
∑

m∈M
∑

t∈T
dise f m ×

Xep f mt
capv

+ ∑
p∈P

∑
f∈F

∑
c∈C

∑
t∈T

dis f f c ×
X fp f ct
capv + ∑

p∈P
∑

m∈M
∑

c∈C
∑

t∈T
disgmc ×

Xgpmct
capv + ∑

i∈I
∑

o∈O
∑

t∈T
dishio × Xhoit

capv

+ ∑
o∈O

∑
i∈I

∑
t∈T

disioi × Xiiot
capv + ∑

o∈O
∑

b∈B
∑

t∈T
disjib ×

Xjibt
capv + ∑

f∈F
∑

b∈B
∑

t∈T
disk f b ×

Xk f bt
capv

(2b)

Max z3 = ∑
j∈J2

FJj ×Wj + ∑
i∈I

∑
t′∈T

V JIi ×
Xqit′

capit′
+ ∑

r∈R
∑
f∈F

∑
t∈T

∑
p∈P

V JQp f ×
Xrh f prt

pcap fp f t
(3)

The model’s objective function z1 related to the economic aspect of sustainabilty
maximizes the total cost. This amount of the sum of the cost refers to the consumers’ rice
purchase (1a), the cost of establishing new facilities (1b), transportation cost (1c), the cost
of production for farmers, the cost of maintaining (storing) the product, and the cost of
production for the rice factories (1d), and the cost of energy tax (1e). Objective function
z2 related to the environmental aspect of sustainability minimizes the total amount of
CO2 emitted from constructing the new facilities (2a) and the vehicles traveling among the
network facilities (2b). The vehicle has a certain capacity (capv) that is based on the quantity
of the product transported in each stage (for instance, n for the first time (n = Xaijt′/ capv )),
the number of transportation times is determined; this vehicle needs a certain amount of
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fuel per k(ϕ) for transportion, and when this fuel is used by the vehicle, a certain amount
of CO2 per km (RF) is emitted.

Objective function z3 is associated with the third aspect of sustainability and maxi-
mizes the fixed and variable job opportunities. The fixed job opportunities are independent
of production quantity, but the variable job opportunities are dependent on the production
quantity. This objective function consists of three segments: the 1st one optimizes the fixed
job opportunities created by opening the new facilities; the 2nd one optimizes the variable
job opportunities of rice production in the farms; the 3rd one optimizes the variable job
opportunities of rice production in the factories. Our target behind presenting this model
was to strike a balance among the costs, the quantity of the pollutants, and the number of
the fixed and variable job opportunities. This model’s constraints are the following:

Constraints:

Xqit′ ≤ c̃apit′ ∀i ∈ I, t′ ∈ T (4)

∑
i∈I

∑
t′∈T′

Xaijt′ ≥ ∑
k∈K

∑
t∈T

Xbj f t ∀j ∈ J t, t′ ∈ T (5)

Xhjjt = Xhjj,t−1 + ∑
i∈I

Xaijt′ − ∑
k∈K

Xbj f t ∀j ∈ J t, t′ ∈ T′ (6)

∑
i∈I

Xaijt′ ≤ M×Wj ∀t ∈ T, j ∈ J2 (7)

∑
j∈J

Xbjft ≤ capf f ∀ f ∈ F, t ∈ T (8)

∑
f∈F

X f pfct ≥ d̃copct ∀c ∈ C, t ∈ T, p ∈ P (9)

∑
k∈K

Xgprct ≥ d̃ctpct ∀c ∈ C, t ∈ T (10)

∑
f∈F

Xdfkt ≥ dkkt ∀k ∈ K, t ∈ T (11)

∑
f∈F

Xefvt ≥ dvvt ∀u ∈ U, t ∈ T (12)

∑
r∈R

Xrhfprt ≤ pcapf pft ∀p ∈ P, t ∈ T, f ∈ F (13)

∑
j∈J

∑
t∈T

Xbj f t × θp = ∑
r∈R

∑
t∈T

Xrh f prt ∀ f ∈ F, p ∈ P (14)

∑
t∈T

∑
r∈R

Xrhyr f t = ∑
t∈T

∑
v∈V

Xc f vt + ∑
t∈T

∑
k∈K

Xd f kt + ∑
t∈T

∑
m∈M

Xe y f mt

+ ∑
t∈T

∑
c∈C

X fy f ct ∀ f ∈ F

(15)

∑
t∈T

∑
r∈R

Xrhxr f t = ∑
t∈T

∑
m∈M

Xex f mt + ∑
t∈T

∑
c∈C

X fx f ct ∀ f ∈ F (16)

∑
i∈I

∑
t′∈T′

Xaijt′ ≤ capjj ∀j ∈ J , ∀t ∈ T (17)

Xhjjt ≤ capjj ∀t ∈ T , ∀j ∈ J (18)

∑
j∈J

Xaijt′ = β× Xqit′ ∀i ∈ I, ∀t′ ∈ T′ (19)

∑
t∈T

XSebt ≤ M× Zb ∀b ∈ B (20)
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∑
t∈T

XSest ≤ M×Vs ∀s ∈ S (21)

∑
i∈I

∑
t′∈T

Xiiot′ ≤ M×Qo
∀o ∈ O2 (22)

∑
i∈I

∑
t′∈T

Xiibt′ + ∑
f∈F

∑
t′∈T

Xk f bt ≤ M× Zb ∀i ∈ I, ∀t′ ∈ T (23)

∑
i∈I

∑
t′∈T

Xiiot′ ≤ Capoo ∀o ∈ O2 (24)

∑
o∈O

Xioit ≥ diit ∀i ∈ I , ∀t′ ∈ T (25)

∑
o∈O

Xhiot′ + ∑
j∈J

Xjibt′ = (1− β)× Xqit′ ∀i ∈ I , ∀t′ ∈ T′ (26)

ψ×∑
i∈I

∑
t∈T

Xhiot′ = ∑
i∈I

∑
t∈T

Xioit′ ∀o ∈ O (27)

λ×∑
i∈I

Xjibt + δ× ∑
f∈F

Xk f bt = XSebt ∀b ∈ B , ∀t ∈ T (28)

∑
j∈J

∑
t∈T

Xbj f t × η = ∑
b∈B

Xk f bt ∀t ∈ T, f ∈ F (29)

∑
p∈P

∑
f∈F

Xrh f prt × EP = XSert ∀r ∈ R, ∀t ∈ T (30)

XSert ≤ caprrt ∀r ∈ R, ∀t ∈ T (31)

∑
f∈F

∑
t∈T

Xep f mt = ∑
c∈T

∑
t∈T

Xgpmct ∀m ∈ M, ∀p ∈ P (32)

Xai jt′ , Xbj f t, Xc f vt, Xd f kt, Xep f mt, X fp f ct, Xgpmct, Xhiot, Xioit,
Xjibt, Xk f bt, Xhjjt, Xrh f prtXsert ≥ 0 Wj, Vs, Zb, Qo ∈ {0, 1} (33)

Constraint (4) states that the amount of rice plant harvested by the producers is the
maximum of their production capacity. Constraint (5) displays the equilibrium in the
distribution centers and states that the sum of the input product to each distribution center
is larger than or equal to the output product. Constraint (6) balances the inventory of
the unprocessed rice in the distribution centers. Constraint (7) states that the condition
for dispatching the product to the distribution centers is the establishment of that center.
Constraint (8) denotes that the quantity of the unprocessed rice transferred to each factory
has to be less than its storage capacity. Constraints (9) and (10) show that the demand for
the rice required by the customers has to be met through traditional and online shopping.
Constraints (11) and (12) state that the rice bran demanded by the pharmaceutical and
toiletry industries has to be satisfied. Constraint (13) indicates that the quantity of the
produced product has to be less than the production capacity of each factory. Constraint (14)
demonstrates that the amount of rice or bran produced in factories is gained as a fraction
of paddy.

Constraints (15) and (16) state that the total bran and rice produced at each factory
has to be delivered to the consumers. Constraints (17) and (18) display the storage capacity
of the collection centers. Constraint (19) shows that the quantity of the unprocessed rice
transported to the distribution centers has to be equal to the amount of the produced rice
plant multiplied by its conversion rate to paddy. Constraints (20) and (21) demonstrate that
the energy required for processing rice is supplied from a renewable energy source if it
is opened. Constraint (22) displays that rice straw is transported to the recycling centers
if that center is opened. Constraint (23) states that rice straw and husk are dispatched
to the bio-refineries if the center is opened. Constraint (24) shows that the quantity of
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rice transported to each center has to be less than its storage capacity. Constraint (25)
displays the compost demanded by the farmers that has to be met during each period.
Constraint (26) demonstrates that the amount of rice straw transferred to the bio-refineries
and the recycling centers is a fraction of the quantity of the produced rice plant.

Constraint (27) states that the amount of compost produced in recycling centers is
equal to the amount of the received rice straw multiplied by its conversion rate to compost.
Constraint (28) demonstrates that the energy generated from rice waste in each bio-refinery
is equal to the amount of the received rice straw and husk multiplied by their conversion
rate into energy. Constraint (29) indicates that the amount of rice husk transported to the
bio-refinery is limited and equal to the amount of the received paddy multiplied by its
conversion rate to husk.

Constraint (30) indicates that the quantity of the rice and the produced bran in each fac-
tory is bound to the available energy. Constraint (31) shows that the energy generated from
each source is bound to the energy generation capacity, and Constraint (32) balances the
flow in each market. Finally, Constraint (33) depicts the model’s type of decision variables.

3.2. Uncertainty Model

In the proposed model, the parameters of purchase cost, supply, and demand are
uncertain. In this section, using the fuzy logic proposed by Jimenez’s method [37], we
introduce the uncertain counterpart of the proposed model. As Jimenez’s method does not
impose additional inequality constraints, it is efficient in solving fuzzy decision problems [7].
Pursuant to this method, the fuzzy parameters presented in Equations (34) and (35) can be
represented by a set of triangular fuzzy numbers for the optimistic, realistic, and pessimistic
cases. Regarding Jimenez’s method, the Expected Interval (EI) and the Expected Value (EV)
of a fuzzy parameter can be estimated as given in the following:

EI(c̃) = [E1, E2] = [
1∫

0
fc
−1(x)dx,

1∫
0

gc
−1(x)dx] =

1∫
0
(x(cq − cp) + cp)dx = [

1∫
0
(x(cs − cq) + cs)dx] = [ 1

2 (c
w + cq), 1

2 (c
q + cv) ]

EV(c̃) = (E1
C+E2

C)
2 = cw+2cq+cv)

4

(34)

The fuzzification of a parameter based on Jimenez’s method can be presented as
follows. Suppose a fuzzy parameter of demand in the optimistic, realistic, and pessimistic
state including the values cw =3, 4, and cv =6 units. In Jimenez’s method, the expected
value of the fuzzy parameter can be estimated as the following:

EV(c̃) =
cw + cq + cv

4
=

3 + 2 ∗ 4 + 6
4

= 4.25 (35)

To convert the set of constraints like ãiX ≥ b̃i, i = 1, 2, . . . I, the following convertion
is performed:

(a× (ai
v + ai

q)

2
+ (1− a)× (ai

w + ai
q)

2
)X ≥ (a× (bi

v + bi
q)

2
+ (1− a)× (bi

w + bi
q)

2
) (36)

If the uncertainty results in the model’s infeasibility, the following set of equations can
be accepted:

(
a
2
× (ai

v + ai
q)

2
+ (1− a

2
)× (ai

p + ai
q)

2
)X ≥ (

a
2
× (bi

v + bi
q)

2
+ (1− a

2
)× (bi

w + bi
q)

2
) (37)

((
1− a

2
)
× (ai

v+ai
q)

2 +
( a

2
)
× (ai

w+ai
q)

2

)
X ≥

((
1− a

2
)
× (bi

v+bi
q)

2 +
( a

2
)
× (bi

w+bi
q)

2

) (38)
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Furthermore, when the constraints become non-fuzzy, the membership function proposed
by Torabi–Hassani (TH) in [37] is used according to Equation (38):

µF =


1 i f Z < Za−PIS

Za−NIS−Z
Za−NIS−Za−PIS i f Za−PIS ≤ Z ≤ Za−NIS

0 i f Z > Za−NIS
(39)

Moreover, when we intend to minimize the objective function, the following member-
ship function is employed:

µF =


1 i f Z > Za−PIS

Z−Za−NIS

Za−PIS−Za−NIS i f Za−NIS ≤ Z ≤ Za−PIS

0 i f Z < Za−NIS
(40)

where the positive ideal solutions (a-PIS) and the negative ones (a-NIS) of the objective
function (Z) at the feasibility level (a) are considered for the total cost’s objective function.
Thus, the fuzzy model equivalent to the original problem’s model can be formulated as
follows:

Problem’s model:

Min z1 = ∑
r∈R

∑
c∈C

∑
t∈T

prmw
pmt+2prmq

pmt+prmv
pmt

4 × gpmct

+ ∑
f∈F

∑
c∈C

∑
t∈T

pr f w
p f t+2pr f q

p f t+pr f v
p f t

4 × X fp f ct+

∑
j∈J

f cjj2 × wj2 + ∑
s∈S

f css × vs + ∑
b∈B

f cbb × zb + ∑
i∈I

∑
o∈O

∑
t∈T

cpco × Xhoit′+

CTV × (∑
i∈I

∑
j∈J

∑
t∈T

disaij × Xaijt+ ∑
j∈J

∑
f∈F

∑
t∈T

disbj f × Xbj f t+ ∑
f∈F

∑
t∈T

∑
t∈T

disc f v × Xc f pt

+ ∑
f∈F

∑
k∈K

∑
t∈T

disd f k × Xd f kt+ ∑
p∈P

∑
f∈F

∑
m∈M

∑
t∈T

dise f m × Xep f mt + ∑
f∈F

∑
c∈C

∑
t∈T

dis f c × X f f ct

+ ∑
p∈P

∑
m∈M

∑
c∈C

∑
t∈T

disgmc × Xgpmct+ ∑
o∈O

∑
i∈I

∑
t∈T

dishoi × Xhoit + ∑
o∈O

∑
i∈I

∑
t∈T

disioi × Xioit+

∑
b∈B

∑
i∈I

∑
t∈T

disjib × Xjibt + ∑
f∈F

∑
b∈B

∑
t∈T

disk f b × Xk f bt) + ∑
i∈I

∑
t′∈T

cpai × Xqit′ + ∑
j∈J

∑
t∈T

chjjt × Xhjjt

+ ∑
p∈P

∑
r∈R

∑
f∈F

∑
t∈T

[ cptw
r+2cptq

r+cptv
r

4 ]× Xrh f prt + ∑
r∈R

∑
t∈T

[ ctaxw
r+2ctaxq

r+ctaxv
r

4 ]× XSert

(41)

Equations (2) and (3)

Xqit′ ≤
(

α

2
× capv

it′ + capq
it′

2
+

(
1− α

2

)
× capw

it′ + capq
it′

2

)
∀i ∈ I, t′ ∈ T (42)

Equations (5)–(8)

∑
f∈F

Xepfct ≥
(

α

2
×

dcopct
q + dcopct

v

2
+

(
1− α

2

)
×

dcopct
w + dcopct

q

2

)
∀c ∈ C, t ∈ T, p ∈ P (43)

∑
m∈M

Xgpmct ≥
(

α

2
×

dctv
pct + dctq

pct

2
+

(
1− α

2

)
×

dctw
pct + dctq

pct

2

)
∀c ∈ C, t ∈ T, p ∈ P (44)

Equations (11) and (33).

4. Solution Approach

In the current study, a multi-objective MILP model is proposed to create a balance
among the cost, the quantity of the pollutants, and the job opportunities in a rice logistics
network. In order to solve this model, four metaheuristic algorithms, including a multi-
objective version of the reptile search optimizing algorithm called MORSO and three
popular algorithms, namely MOSA, MOPSO, and MOGWO, with priority-based encoding



Sensors 2022, 22, 3547 15 of 37

are used as the proposed approach. Moreover, the LP-metric method is applied to evaluate
the performance of the aforementioned algorithms.

The algorithms of MOPSO and MOSA have been further explained in [21] and
MOGWO has been given in [38]. Therefore, the explanation of these algorithms is taken for
granted and the MORSO algorithm is described separately in a sub-section. In this section,
we explain the proposed solution algorithm in the sub-section Encoding and Decoding
and indicate how to satisfy the model’s constraints using this approach. Then, in the
continuation, the criteria for comparing the algorithms are described.

4.1. Encoding and Decoding

In this research, the priority-based encoding method developed by [39] is used to
display the initial solution. Considering the encoding and decoding design and method,
a small size example is needed to meet the constraints. Here, in Figure 10, the initial
solution’s structure is illustrated.
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Figure 10. Schematic design of proposed arrays. 

Suppose that the number of the producers, the distribution centers, the rice facto-
ries, the pharmaceutical industries, the toiletry industries, the markets, the customers, 
the solar panel sites, the bio-refineries, and the recycling centers are 2, 1, 1, 3, 1, 2, 1, 2, 2, and 1, respectively. The proposed array is a matrix with six rows and 
with the number of columns as 3 ∗  𝑖 +  2 ∗  𝑗 +  3 ∗  𝑓 +  𝑢 +  𝑘 +  2 ∗  𝑚 +  2 ∗  𝑏 + 2 ∗  𝑜 +  𝑢. The cells of the 1st sub-segment are filled with random numbers between 0 
and 1. In the next stage, as seen in Figure 11, the cells of the 1st sub-segment are sorted 
by their priority. Sorting the numbers is performed separately for each segment. Regard-
ing the encoding of the 1st segment, whose steps are displayed in Table 2, Constraints 
(4)–(6) can be satisfied. Moreover, using the 2nd and 3rd segments’ encoding displayed 
in Tables A1 and A2 in Appendix A, Constraints (17) and (18) are satisfied. In addition, 

Figure 10. Schematic design of proposed arrays.

Suppose that the number of the producers, the distribution centers, the rice factories,
the pharmaceutical industries, the toiletry industries, the markets, the customers, the solar
panel sites, the bio-refineries, and the recycling centers are 2, 1, 1, 3, 1, 2, 1, 2, 2, and 1,
respectively. The proposed array is a matrix with six rows and with the number of columns
as 3 ∗ i + 2 ∗ j + 3 ∗ f + u + k + 2 ∗ m + 2 ∗ b + 2 ∗ o + u. The cells of the 1st
sub-segment are filled with random numbers between 0 and 1. In the next stage, as seen in
Figure 11, the cells of the 1st sub-segment are sorted by their priority. Sorting the numbers
is performed separately for each segment. Regarding the encoding of the 1st segment,
whose steps are displayed in Table 2, Constraints (4)–(6) can be satisfied. Moreover, using
the 2nd and 3rd segments’ encoding displayed in Tables A1 and A2 in Appendix A,
Constraints (17) and (18) are satisfied. In addition, the inventory in the distribution centers
are controlled by the encoding of the 2nd segment. Other constraints are met similarly by
encoding the rest of the segments.
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Table 2. Proposed priority-based decoding procedure of segment 1.

For t = 1:T

Inputs:
I = set of producers
J = set of distribution centers
Ca(i, t) = production capacity of producer i in period t
D(j, t) =capacity
V(L + N) =encode
Dis(i, j) = Distance between nodes

Outputs:
Xaloc(i, j, t) =amount in period t
Em(i, j, t) =Amount of CO2 emission caused by transferring quantity between node i and in
period t
W(j) = binary variable shows the distribution centers j is opened
Step1 = Xaloc(i, j, t) = 0 i ∈ I, j ∈ J
while ∑

i
Ca(i, t) > 0 or ∑

j
D(j, t) > 0

Step3 = Xaloc(i, j, t) = min(Ca(i, t), Cap(j, t))
Update demands and capacities
Ca(i, t) = Ca(i, t)− Xaloc(i, j, t), D(j, t) = D(j, t)− Xaloc(i, j, t)
Step4 = if Ca(i, t) = 0 then V(I, J) = 0;
if D(j, t) = 0 then V(I, J) = 0;
End while
Step5 = Em(i, j, t) =

(
Xaloc(i, j, t)/Capv × RFf × Disij

)
For i ∈ I
If ∑

i
Xaloc(i, j, t) > 0thenW(j) = 1

End if
End for
End for

4.2. Reptile Search Algorithm

The Reptile Search Optimizer (RSO) proposed by [40] is a population-based algorithm
that simulates the hunting mechanisms and social behavior of crocodiles in the wild. The
algorithm is inspired by some of the key features of crocodile behavior, including encircling
the prey and the coordination of crocodiles during an attack. The mechanisms of encircling
and hunting prey are mathematically modeled as follows.

4.2.1. Encircling Phase

In this stage, the search space for finding a better solution is analyzed based on two
main strategies including high walking and belly walking. Selecting the strategy depends
on the number of iterations so that as long as t ≤ T

4 , the high walking strategy is selected,
and as long as > T

4 , t ≤ T
2 , the belly walking strategy is chosen. To update the crocodiles’

position in the exploration stage in each iteration, the following equations are applied:

xi,j(t + 1) =
{

Bestj(t)− ηi,j(t)× β− Ri,j(t)× rand t ≤ T
4

Bestj(t)× xr1,j × ES(t)× rand t ≥ T
4 and t < T

2

}
(45)

where Bestj(t) stands for the jth position in the best-obtained solution in iteration t and
rand is the random number between 0 and 1 and T is the maximum number of iterations.,
which is calculated according to Equation (46), is a hunting operator for the position in
the ith solution. The parameter β is responsible for controlling the exploration accuracy
in each iteration, which is equal to 0.1. The reduction function, calculated according to
Equation (47), reduces the search space. r1 is a random value between the range [1, N], and
xr1,j indicates the position of the ith solution. N is the number of the solutions. Evolutionary
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Sense (ES (t)) is also a probability ratio of randomly decreasing values between 2 and
−2 throughout the number of iterations, which is calculated using Equation (48).

ηi,j(t) = Bestj(t)× Pi,j (46)

Ri,j(t) =
Bestj(t)− x(r2,j)

Bestj(t) + ε
(47)

ES(t) = 2× r3×
(

1− 1
T

)
(48)

In Equation (47), ε is a small value and r2 is a random number between [1, N]. In
addition, r3 denotes a random integer between and 1. Pi,j is the percentage difference
between the jth position of the best-obtained solution and the jth position of the current
solution, which is calculated using Equation (49):

Pi,j = a +
xi,j(t)−M(xi)

Bestj(t)× (UBj − LBj) + ε
(49)

where, in Equation (49), M(xi) is the average positions of the ith solution, calculated using
Equation (50). UBj and LBj are the upper and lower boundaries of the position, respectively.
Finally, α is a parameter, which controls the exploration accuracy during iterations, which
is fixed equal to.

M(xi) =
∑ n

j=1xi,j(t)

n
(50)

4.2.2. Hunting Simulation

The goal behind this mechanism is to escape being trapped in the optimal local points,
which is based on two strategies during hunting, coordination and cooperation. Like the
encircling mechanism, selecting the strategy depends on the number of iterations so that
when, crocodiles select a hunting coordination strategy; otherwise, the cooperation hunting
strategy is selected, which is conditioned by t > 3T

4 , t ≤ T. To update the position of the
crocodiles in this phase in each iteration, the following equations are applied:

xi,j(t + 1) =
{

Bestj(t)× Pi,j(t)× rand t ≤ 3T
4 andt > T

2
Bestj(t)− ηi,j(t)× ε− Ri,j(t)× rand t ≥ Tandt > 3T

4

}
(51)

where the values of each parameter are similar to what has been pointed out in the previous
part. Consequently, the computational complexity of the proposed RSA is as follows:

O(RSA) = O(N × (T × D + 1)), where T is the number of iterations, N presents the
number of used solutions, and D presents the solution size. The pseudo-code of the RSO
algorithm is depicted in Table A3 in the Appendix A.

4.3. Multi-Objective Reptile Search Optimization Algorithm

In this sub-section, a multi-objective version of the RSO known as MORSO is pro-
posed in order to solve the proposed multi-objective model. Like other multi-objective
metaheuristic algorithms, we deal with concepts such as archive, grid approach, and leader
selection in this paper.

4.3.1. Archive and Grid Approach

Archive is in charge of saving, controlling, and retrieving the optimal achieved Pareto
solutions. During each iteration, the position of the search agents is updated based on
the mechanism of the RSO algorithm and the new obtained solutions are compared with
the archive members. If the new solution dominates one of the archive members, it will
substitute with it. The archive has a limited capacity, and to delete a solution, the grid
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approach is employed to select one of the members in the most crowded part of the archive
and set it aside.

4.3.2. Selecting a Leader

For selecting a leader, one of the best-obtained optimal solutions in the archive is
selected by the roulette wheel method, and other search agents update their position in
order to attack the prey. The flowchart and the pseudo-code of the MORSO algorithm are
illustrated in Figure 12 and Table 3, respectively.
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Table 3. Pseudo-code of MORSO algorithm.

Input: Reptile population and parameters
Output: Archive of non-dominated optimal solutions
Calculate the fitness value of each search agent,
Determine the non-dominated reptiles and add them to archive
While (t < Maxiteration) do
For each search agent do
Update the position of current search agent based on RSO mechanism
End for
Compute the fitness of all search agents
Find the non-dominated optimal solutions from updated search agents
Update the obtained non-dominated reptiles to archive
If archive becomes full then
Check if any search agent goes beyond the search space and then adjust it
Compute the objective function values of each search agent
t = t + 1
End while
Return archive

4.4. Evaluation Indices of Algorithms’ Performance

In this research, five indices were used to evaluate the algorithms’ performance. These
metrics measure different criteria, which can be listed as follows.

4.4.1. Number of Pareto Solutions (NPS)

In this criterion, the number of Pareto solutions is computed. Every method with a
higher NPS criterion is better. The ideal state in this method is that a higher number of
Pareto solutions get distributed more evenly in the possible space.
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4.4.2. Mean Ideal Distance (MID)

This index is used to calculate the distance between Pareto solutions. Considering
Equation (52), the lower this index, the higher the algorithm’s performance. In the current
study, the ideal point equals the minimum of each of the objective functions. This index is
calculated as shown by Equation (52).

MID =
NOS

∑
i=1

√√√√(
f 1i− f 1best

f 1maxtotal− f 1min total

)2
+
(

f 2i− f 2best
f 2maxtotal− f 2min total

)2

NOS
(52)

4.4.3. Maximum Spread (MS)

This criterion measures the spread of non-dominated solutions. The more spread out
the non-dominated solutions are, the larger this index will be, and the higher this value,
the more appropriate. This criterion is estimated by Equation (53) in which fjmax and fjmin

are the max and min values of the objective function j among the non-dominated solutions.

MS =

√√√√ I

∑
i=1

(Min Fi −Max Fi)
2 (53)

4.4.4. Spread of Non-Dominance Solutions (SNS)

This index is used to check the variety of non-dominance solutions and is calculated
by Equation (54). The higher this index, the better the algorithm performs. In this equation,
F1i, F2i, and F3i are the values of the 1st, 2nd, 3rd objective functions for the non-dominance
ith solution.

SNS =

√
∑I

i=1 (M− Ci)
2

n− 1
(54)

where Ci =
√

F1i
2 + F2i

2 + F3i
2, M =

∑ I
i=1

√
F1i

2+F2i
2+F3i

2

n−1

4.4.5. Computational Time Index (CPU Time)

In large-scale problems, one of the most critical indices is the CPU time, and the lower
this value, the lower the efficiency of the algorithm.

5. Validation and Analysis of Results

In this section, the accuracy of the programmed model is analyzed by implementing
it onto a real case study. Then, in another sub-section, the parameters of the proposed
algorithms are tuned to come up with better results. In the third sub-section, to further
evaluate the model, sensitivity analysis is performed on some key parameters.

5.1. Case Study

In this section, the accuracy of the programmed model is analyzed by implementing
it onto a real case study in Iran, i.e., in Mazandaran Province. At the moment, over
300,000 hectares are under rice cultivation in Iran and this province is the largest producer
of rice in Iran [21]. In this study, in order to collect the data, some of the province-based
cities were considered as the position of the network facilities; Figure 13 depicts the position
of the cities. Moreover, ten sample problems were generated based on the number of the
network facilities for evaluating the proposed model’s efficiency, as seen in Table 4. As the
information collected from the farmers indicated, the conversion rate of rice plant to paddy
is about 0.8. Therefore, the conversion rate of rice to straw is about 0.2. In addition, the
conversion rate of paddy to processed rice is about 0.64, and the conversion rates of paddy
to bran and to husk are about 0.26 and 0.1, respectively. In bio-refineries, around 26.7 kWh
of electricity can be supplied per kg of rice straw and husk. The power generation capacity
of solar panel sites ranges from 200 to 400 MWh.
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Table 4. General data of test problem.

Test I J1 J2 F M K O1 O2 V B U

1 6 2 1 2 2 1 3 1 2 1 2
2 13 4 2 4 3 2 5 2 4 3 3
3 22 7 3 8 8 2 7 4 6 6 8
4 30 9 5 9 6 3 9 7 9 8 11
5 40 15 7 14 9 5 14 11 11 12 14
6 55 20 8 20 14 9 23 13 18 17 17
7 65 24 11 24 16 12 28 15 25 24 22
8 72 30 14 28 20 15 35 16 31 30 26
9 80 34 17 32 24 19 42 18 37 39 34

10 82 38 20 36 28 21 49 20 42 40 39

The transportation costs among the facilities correspond with the distance, which is
provided in Table A4 in Appendix A. In addition, a nine-ton truck is used to transport the
products. This vehicle uses R = 0.0832 fuel per k of transportation and its fuel-emitted CO2
rate (ϕ) is 3.15. The values of these two parameters have been extracted from [38]. Some
data are also generated randomly, as demonstrated in Table A5 in Appendix A.

5.2. Results Analysis

Firstly the proposed algorithms are tuned to achieve better results. After that, the
results from solving the model are analyzed, and for further model evaluation, sensitivity
analysis is performed on parameters such as the energy supply capacity and customers’ demand.

5.3. The Tune of the Algorithm’s Parameters

There are several methods for tuning the metaheuristic algorithms’ parameters with
the goal of improving their performance, out of which the Taghuchi method is utilized in the
present paper. Taguchi developed new statistical concepts and combined and established
particular groups of orthogonal arrays to present the tests. This method classifies a group
of factors based on orthogonal arrays into two main parts, including control and noise
factors, and while maximizing the effect of the control factors, it minimizes that of the noise
factors according to the following equation [41].

SN = −10 log
(

∑n
i=1 Y2

n

)
(55)

where Y stands for the solution value and n is the number of the orthogonal arrays.
Moreover, Equation (56) presents the selected responses in this study. Two main

concepts related to the solution are convergence and diversity. The MID metric measures
the convergence of the solutions and the variety of Pareto solutions is gained by the MS
metric [2].

MCOV =
MID
MS

(56)
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It is necessary to determine the parameters we need to tune in every algorithm
to perform the Taguchi test. In the present study, three levels were considered for all
parameters given in Table 5. The MOGWO algorithm has three factors, and MOPSO,
MOSA, and MORSO algorithms have four factors. By performing the experiment in
Minitab software, L9 orthogonal arrays are proposed.

Table 5. Applied algorithms’ parameter levels and their values.

Algorithm Parameter
Parameter Level

Best Level
Level 1 Level 2 Level 3

MOSA

Maximum iteration (Maxiter) 50 100 150 150
Population size (Npop) 40 50 60 60

T 30 40 50 50
Alpha 0.9 0.95 0.99 0.95

MOGWO
Maximum iteration (Maxiter) 50 100 150 150

Population size (Npop) 40 50 60 50
Initialization ratio (IR) 0.5 0.6 0.7 0.5

MOPSO

Maximum iteration (Maxiter) 50 100 150 150
Population size (Npop) 40 50 60 50

C1 1.9 2 2.1 2.1
C2 2 2.1 2.2 2.1

MORSO

Maximum iteration (Maxiter) 50 100 150 150
Population size (Npop) 40 50 60 60

Alpha 0.1 0.12 0.14 0.1
Beta 0.1 0.12 0.14 0.12

The orthogonal arrays of each algorithm and their derived results are illustrated in
Tables A6–A9 in Appendix A. Moreover, the S/N plots for the mentioned algorithms are
displayed in Figures 14–17, by which the highest level is the best level for each algorithm.
As seen in the plots, for example, in the simulated annealing algorithm, the best level for
the maximum 3rd level iteration factor is the 3rd one, the best level for the population
number factor is the 3rd level, for Phi1 factor this is the 2nd level, and for Phi2 factor, the
best level is the 1st level.

Sensors 2022, 22, 3547 23 of 40 
 

 

Table 5. Applied algorithms’ parameter levels and their values. 

Best Level 
Parameter Level 

Parameter  Algorithm 
Level 3 Level 2 Level 1 

150 150 100 50 Maximum iteration (Maxiter) 

MOSA 
60 60 50 40 Population size (Npop) 
50 50 40 30 T 

0.95 0.99 0.95 0.9 Alpha 
150 150 100 50 Maximum iteration (Maxiter) 

MOGWO 50 60 50 40 Population size (Npop) 
0.5 0.7 0.6 0.5 Initialization ratio (IR) 
150 150 100 50 Maximum iteration (Maxiter) 

MOPSO 
50 60 50 40 Population size (Npop) 
2.1 2.1 2 1.9 C1 
2.1 2.2 2.1 2 C2 
150 150 100 50 Maximum iteration (Maxiter) 

MORSO 
60 60 50 40 Population size (Npop) 
0.1 0.14 0.12 0.1 Alpha 

0.12 0.14 0.12 0.1 Beta 

The orthogonal arrays of each algorithm and their derived results are illustrated in 
Tables A6–A9 in Appendix A. Moreover, the S/N plots for the mentioned algorithms are 
displayed in Figures 14–17, by which the highest level is the best level for each algo-
rithm. As seen in the plots, for example, in the simulated annealing algorithm, the best 
level for the maximum 3rd level iteration factor is the 3rd one, the best level for the pop-
ulation number factor is the 3rd level, for Phi1 factor this is the 2nd level, and for Phi2 
factor, the best level is the 1st level. 

 
Figure 14. Signal to noise plot of MOSA. 

321

98

97

96

95

94

93

92

321 321 321

Npop

M
ea

n o
f S

N 
rat

ios

Maxit T0 Alpha

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better

Figure 14. Signal to noise plot of MOSA.
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Figure 15. Signal to noise plot of MOPSO.
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Figure 16. Signal to noise plot of MOGWO.
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5.4. Analysis of Results

We designed 10 sample problems for evaluating the proposed model’s efficiency. For
this purpose, a computer with 4 GB of RAM and 2.2 GHz CPU was employed and encoding
the proposed models and algorithms was run in MATLAB software. The first to fourth
sample problems were solved by LP-metric and the metaheuristic algorithms and the rest
were solved by metaheuristic algorithms regarding the model being an NP-hard.

To evaluate the aforementioned metaheuristic algorithms, a one-to-one comparison
was performed as the criteria indicated in Section 4. The top performance is based on lower
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MID and CPU time criteria and higher NPS, MS, and SNS. Table 6 displays the results of
this comparison. As seen in the table, metaheuristic algorithms have less execution time
compared to the LP-metric method. As the number of sample problems increases, the
execution time of the model with the LP-metric method should increase, which indicates
that the model is NP-hard. Therefore, we need meta-algorithms in order to solve the model
in a reasonable time and reduce its complexity [42,43].

Table 6. Evaluation of mentioned algorithms in each metric measure.

Problem NPS CPU Time (Second)

MOPSO MOGWO MOSA MORSO LP-Metric MOPSO MOGWO MOSA MORSO LP-Metric

1 22 24 16 25 11 29 28 4.1 25 1223
2 13 22 14 24 11 44 40 3.3 37 1757
3 23 24 15 24 12 57 54 3.6 53 2598
4 36 35 17 37 11 67 71 4 68 3150
5 26 24 23 28 13 83 88 4.2 85 5294
6 28 30 16 32 NA 98 101 4.5 96 NA
7 17 21 15 23 NA 116 125 4.8 112 NA
8 32 27 20 27 NA 137 139 5.1 132 NA
9 29 25 21 27 NA 155 163 5.4 151 NA

10 27 26 20 29 NA 179 197 5.6 173 NA

Problem MS SNS

MOPSO MOGWO MOSA MORSO LP-Metric MOPSO MOGWO MOSA MORSO LP-Metric

1 76,996 78,902 80,928 81,616 813,421 97,270 76,686 62,796 98,209 96,036
2 179,312 191,723 329,516 258,032 293,404 322,501 303,975 300,817 331,716 339,023
3 362,921 402,387 334,579 410,477 425,328 476,055 493,922 475,192 498,241 500,445
4 483,448 512,464 415,642 517,116 505,373 637,523 682,038 598,916 672,870 675,803
5 495,925 472,086 426,705 522,802 480,042 773,715 876,200 834,830 881,936 852,516
6 514,229 503,311 350,392 530,459 NA 1021,995 1031,169 1087,758 1105,495 NA
7 668,699 613,566 597,331 608,137 NA 1241,442 1262,644 1241,226 1293,651 NA
8 348,317 563,723 552,739 583,602 NA 1489,544 1549,389 1438,068 1567,032 NA
9 737,518 794,779 649,699 774,415 NA 1664,923 1723,552 1732,838 1743,955 NA

10 835,031 887,315 587,273 906,189 NA 1947,220 1931,833 1895,988 1963,370 NA

Problem MS

MOPSO MOGWO MOSA MORSO LP-Metric

1 1.56 1.3 1.5 1.2 1.3
2 4 2.5 3.7 3.1 2.2
3 3.5 3.2 2.5 2.3 2.46
4 4.2 3.7 5.4 3.5 3.1
5 4.7 6.1 5.2 4.4 4.2
6 4.8 4.6 6.5 4.3 NA
7 5.4 6.9 8.8 5.5 NA
8 7.1 4.9 8.6 4.7 NA
9 5.4 7.7 8 5.9 NA

10 5.9 7.9 7.8 6.1 NA

In order to compare the algorithms in terms of performance, ANOVA was used.
The intervals plot (at confidence level 95%) are sketched pursuant to the data in Table 6
separately for each of the algorithms and according to each criterion in Figures 18–22. As
perceived from these plots, the MORSO algorithm performed better than other algorithms
in terms of NPS, MS, and MID criteria. These plots indicate that MOSA is faster than other
algorithms. In terms of SNS criteria, all three algorithms performed similarly close to each
other. Thus, it can be concluded that the MORSO algorithm performed better than other
algorithms. An example of non-dominance solutions for the first sample problem for the
mentioned metaheuristic algorithm is shown in Figures 23–26.



Sensors 2022, 22, 3547 24 of 37

Sensors 2022, 22, 3547 26 of 40 
 

 

close to each other. Thus, it can be concluded that the MORSO algorithm performed bet-
ter than other algorithms. An example of non-dominance solutions for the first sample 
problem for the mentioned metaheuristic algorithm is shown in Figures 23–26. 

 
Figure 18. Interval plots of NPS. 

 
Figure 19. Interval plots of CPU time. 

 
Figure 20. Interval plots of MID. 

MORSOMOSAMOGWOMOPSO

30.0

27.5

25.0

22.5

20.0

1 7.5

1 5.0

Da
ta

Interval Plots of NPS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

1 40

1 20

1 00

80

60

40

20

0

Da
ta

Interval Plots of CPU time
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

8

7

6

5

4

3

Da
ta

Interval Plots of MID
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 18. Interval plots of NPS.

Sensors 2022, 22, 3547 26 of 40 
 

 

close to each other. Thus, it can be concluded that the MORSO algorithm performed bet-
ter than other algorithms. An example of non-dominance solutions for the first sample 
problem for the mentioned metaheuristic algorithm is shown in Figures 23–26. 

 
Figure 18. Interval plots of NPS. 

 
Figure 19. Interval plots of CPU time. 

 
Figure 20. Interval plots of MID. 

MORSOMOSAMOGWOMOPSO

30.0

27.5

25.0

22.5

20.0

1 7.5

1 5.0

Da
ta

Interval Plots of NPS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

1 40

1 20

1 00

80

60

40

20

0

Da
ta

Interval Plots of CPU time
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

8

7

6

5

4

3

Da
ta

Interval Plots of MID
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 19. Interval plots of CPU time.

Sensors 2022, 22, 3547 26 of 40 
 

 

close to each other. Thus, it can be concluded that the MORSO algorithm performed bet-
ter than other algorithms. An example of non-dominance solutions for the first sample 
problem for the mentioned metaheuristic algorithm is shown in Figures 23–26. 

 
Figure 18. Interval plots of NPS. 

 
Figure 19. Interval plots of CPU time. 

 
Figure 20. Interval plots of MID. 

MORSOMOSAMOGWOMOPSO

30.0

27.5

25.0

22.5

20.0

1 7.5

1 5.0

Da
ta

Interval Plots of NPS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

1 40

1 20

1 00

80

60

40

20

0

Da
ta

Interval Plots of CPU time
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

8

7

6

5

4

3

Da
ta

Interval Plots of MID
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 20. Interval plots of MID.



Sensors 2022, 22, 3547 25 of 37Sensors 2022, 22, 3547 27 of 40 
 

 

 
Figure 21. Interval plots of MS. 

 
Figure 22. Interval plots of SNS. 

 
Figure 23. Pareto front of the first test problem from MOGWO. 

MORSOMOSAMOGWOMOPSO

700000

600000

500000

400000

300000

Da
ta

Interval Plots of MS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

1 500000

1 250000

1 000000

750000

500000

Da
ta

Interval Plots of SNS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 21. Interval plots of MS.

Sensors 2022, 22, 3547 27 of 40 
 

 

 
Figure 21. Interval plots of MS. 

 
Figure 22. Interval plots of SNS. 

 
Figure 23. Pareto front of the first test problem from MOGWO. 

MORSOMOSAMOGWOMOPSO

700000

600000

500000

400000

300000

Da
ta

Interval Plots of MS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

1 500000

1 250000

1 000000

750000

500000

Da
ta

Interval Plots of SNS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 22. Interval plots of SNS.

Sensors 2022, 22, 3547 27 of 40 
 

 

 
Figure 21. Interval plots of MS. 

 
Figure 22. Interval plots of SNS. 

 
Figure 23. Pareto front of the first test problem from MOGWO. 

MORSOMOSAMOGWOMOPSO

700000

600000

500000

400000

300000

Da
ta

Interval Plots of MS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

MORSOMOSAMOGWOMOPSO

1 500000

1 250000

1 000000

750000

500000

Da
ta

Interval Plots of SNS
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.

Figure 23. Pareto front of the first test problem from MOGWO.



Sensors 2022, 22, 3547 26 of 37Sensors 2022, 22, 3547 28 of 40 
 

 

 
Figure 24. Pareto front of the first test problem from MOSA. 

 
Figure 25. Pareto front of the first test problem from MOPSO. 

 
Figure 26. Pareto front of the first test problem from MORSO. 

5.5. Sensitivity Analysis 
In this sub-section, for further evaluation of the proposed model and the top algo-

rithm, the sensitivity analysis is conducted in two states. It is worth mentioning that sen-
sitivity analysis was performed for the first sample problem. In the first state, the sensi-
tivity analysis is performed on the parameter of capacity of each energy source, and in 
the second state, on the parameter of customers’ demand for the processed rice. 

  

Figure 24. Pareto front of the first test problem from MOSA.

Sensors 2022, 22, 3547 28 of 40 
 

 

 
Figure 24. Pareto front of the first test problem from MOSA. 

 
Figure 25. Pareto front of the first test problem from MOPSO. 

 
Figure 26. Pareto front of the first test problem from MORSO. 

5.5. Sensitivity Analysis 
In this sub-section, for further evaluation of the proposed model and the top algo-

rithm, the sensitivity analysis is conducted in two states. It is worth mentioning that sen-
sitivity analysis was performed for the first sample problem. In the first state, the sensi-
tivity analysis is performed on the parameter of capacity of each energy source, and in 
the second state, on the parameter of customers’ demand for the processed rice. 

  

Figure 25. Pareto front of the first test problem from MOPSO.

Sensors 2022, 22, 3547 28 of 40 
 

 

 
Figure 24. Pareto front of the first test problem from MOSA. 

 
Figure 25. Pareto front of the first test problem from MOPSO. 

 
Figure 26. Pareto front of the first test problem from MORSO. 

5.5. Sensitivity Analysis 
In this sub-section, for further evaluation of the proposed model and the top algo-

rithm, the sensitivity analysis is conducted in two states. It is worth mentioning that sen-
sitivity analysis was performed for the first sample problem. In the first state, the sensi-
tivity analysis is performed on the parameter of capacity of each energy source, and in 
the second state, on the parameter of customers’ demand for the processed rice. 

  

Figure 26. Pareto front of the first test problem from MORSO.

5.5. Sensitivity Analysis

In this sub-section, for further evaluation of the proposed model and the top algorithm,
the sensitivity analysis is conducted in two states. It is worth mentioning that sensitivity
analysis was performed for the first sample problem. In the first state, the sensitivity
analysis is performed on the parameter of capacity of each energy source, and in the second
state, on the parameter of customers’ demand for the processed rice.
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5.5.1. Sensitivity Analysis on Energy Source Capacity Parameter

In this state, it is assumed that the capacity of each energy source would decrease or
increase consistent with the conditions listed in Table 7.

Table 7. Energy sources capacity variation effect.

Caprrt Xsert

Condition Bio-
Refinery

Solar
Panels

Mains
Electricity

Bio-
Refinery

Solar
Panels

Mains
Electricity

1 0 0 +19% −100% −100% -
2 +7% 13% −7% +30% +30% −30%
3 8% 16% −9% +50% +50% −40%

First condition: It is assumed that all electricity required for product processing
should be supplied by the mains electricity and not by the renewable energy sources.

Second condition: It is assumed that the capacity of mains electricity would decrease
by 20% and the capacity of renewable energy sources would increase by 30%.

Third condition: It is assumed that the capacity of the mains electricity would decrease
by 30% and the capacity of renewable energy sources would increase by 40%. Having
solved the model under these conditions by the LP-metric method, the results are provided
in Figures 27–29. The first condition states that the utilization of the mains electricity would
increase by about 19%. The second and third conditions state that with the renewable
sources’ capacity increase, the utilization of mains electricity would decrease by about 7%
and 9%, respectively.
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Figure 27. Demand variation effect on first objective function.

5.5.2. Sensitivity Analysis on Demand

In the second state, sensitivity analysis was carried out on the traditional shopping
consumers’ demand parameter. Sensitivity analysis is performed under five states in which
the demand parameter decreases and increases. Suppose that consumers’ demand increases
by 10% and 20% in two states and decreases by the same level in two states. The third state
is consistent with the base state. After solving the model under all conditions, the results
are displayed in Figures 27–29.
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Figure 28. Demand variation effect on second objective function.
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According to these figures, as the demand increases, all three objective functions
of the model also increase, and vice versa. In other words, if customer demand for rice
increases, the costs, pollutants, and job opportunities created in the supply chain network
will also increase. Due to the increasing demand for rice, farmers are forced to produce
more crops. As a result, production costs and energy consumption taxes will also increase,
and, therefore, the first objective function will increase. In addition, more product will
be moved between facilities and more pollutants will be produced. Therefore, the second
objective function will also increase. Finally, due to the production of more crops, more
job opportunities will be created in rice farms. Thus, the third objective function will also
increase. Therefore, we can conclude that demand and all three objective functions of the
model have a direct relation.

6. Conclusions, Managerial Insight, and Future Works

At the present time, rice feeds over half of the world population, which is globally
crucial in our food systems. Establishing more efficient and sustainable rice value chains
could enable the UN to achieve the Sustainable Development Goal of Zero Hunger by 2050.
In order to achieve this goal, it is essential to properly manage supply chains and create a
balance between the supply and demand of rice, which can solve many supply problems
of this product.
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In the present study, a dual-channel CLSC network of a sustainable supply chain was
designed for a rice plant while considering energy sources in an uncertain environment.
The network included the producers, the distribution centers, the rice factories, the phar-
maceutical industries, the toiletry industries, the markets, the customers, the solar panel
sites, the bio-refineries, and the recycling centers. The grid also supplied electricity needed
to process rice through bio-refineries and solar panel sites. In this network, the required
electrical energy for rice processing was supplied through bio-refineries and the solar panel
site as well. Regarding how rice waste as biomass has the potential to generate energy, this
study addressed this issue and proposed a mathematical model for optimally using rice
waste for energy generation.

Then, the total costs, the quantity of the emitted pollutants, and the fixed and variable
job opportunities created in the proposed network were optimized via an MILP model
under the uncertainty of cost, supply, and demand. The goal of the proposed model was to
determine the optimal quantity of rice production and distribution and its waste among
the network facilities.

The costs include the total transportation costs among the network facilities, the
production costs for the farmers and rice factories, the product maintenance costs for
the distribution centers, and the fixed costs for reopening new distribution centers, the
bio-refineries, and the solar panel sites. In the present research, the parameters cost,
supply, and demand were assumed uncertain, and fuzzy logic was applied to deal with
uncertainty. To solve the proposed model, MOPSO, MOSA, and MOGWO algorithms
and a new multi-objective version of the Reptile Search Optimizer called MORSO were
used. Then, the mentioned algorithms were validated using LP-metric in small-sized
samples. Furthermore, their results and performance were compared based on criteria
such as MS, SNS, NPS, MID, and CPU time. Moreover, for confirming the model’s validity,
ten sample problems in different sizes were designed. In addition, for coming up with
the best performance, the parameters of all three algorithms were tuned by the Taguchi
method. After solving the model, the derived results were evaluated and these algorithms’
performances were analyzed by ANOVA through the interval plots at the confidence level
of 95%. A significant statistical difference was observed in terms of the performances of
these algorithms, and according to the statistical tests, the MORSO algorithm performed
better than other algorithms in terms of NPS, MS, and MID criteria. Furthermore, for
more model evaluation, the sensitivity analysis was performed on the key parameters. The
numerical results indicated that it is possible to save up to 19% of electricity consumption
by constructing the solar panel sites and producing energy from the rice waste.

Considering management, the present study’s results can benefit the relevant man-
agers and the countries producing rice. The present study’s findings will be highly useful
and involve remarkable applications for decision making on opening solar panel sites and
bio-refineries for supplying the required electrical energy for rice processing through focus-
ing on the sustainable dimensions. The related results and findings have been provided.
The findings of this research in the areas of clean energy consumption and job opportunities
can be stated as follows:

• Job opportunity: Agricultural growth has led to increasing the productivity and
income of small and marginal farmers and raising the employment and wages of
workers. Consequently, it is critical to consider this dimension of sustainability in
supply chain optimization. The proposed model pursues the goal of raising job
opportunities and its results revealed that increasing rice production could boost the
intended goal.

• Clean energy consumption: Using solar energy as a source of clean energy has gained
importance considering the non-renewable nature of fossil sources such as oil and
gas. Solar energy and biomass are viewed as a source of clean energy and the cost of
generating electricity by them is less than that generated by fossil fuels. Moreover,
they emit less pollution and fewer greenhouse gases. Regarding how rice straw and
husk have the potential to generate energy, the current research has dealt with this
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matter and a mathematical model has been formulated to make strategic decisions
about the construction of solar panel sites and bio-refineries and optimally using rice
waste for energy generation.

Limitations of the Current Study

The current research has many limitations and it seems that different directions can
be considered for its development. To develop this study in the future, different methods
of rice production and the capacity of energy sources could be considered. Moreover,
water resources are of crucial importance in rice production, thus sustainability should be
promoted by considering water resources issues in future works. Moreover, considering
other uncertainty approaches such as stochastic, probability, and possibilistic is one of the
issues that could be emphasized by the researchers in this field and could be incorporated to
improve the model. Furthermore, solving the proposed model by the heuristic methods and
other metaheuristic algorithms and comparing their results might be interesting. Finally,
integrating the proposed model with topics such as the Internet of Things and Industry 4.0
could also be considered by researchers.
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Abbreviations
Sets and Indicators:
I Set of producers i ∈ I
J1 Set of existing distribution centers j1 ∈ J1
J2 Set of new distribution centers j2 ∈ J2
J Set of all distribution centers j ∈ J = J1

⋃
J2

V Set of pharmaceutical industries v ∈ V
F Set of rice factories f ∈ F
K Set of toiletries industries k ∈ K
M Set of retailers (market) m ∈ M
O1 Set of existing recycling centers o1 ∈ O1
O2 Set of new recycling centers o2 ∈ O2
O Set of all recycling centers o ∈ O = O1

⋃
O2

C Set of customers c ∈ C
T Set of time period t ∈ T = {1, 2, . . . t′, . . . , t}
T′ Index for harvest period t′ ∈ T′ = {1, 2}
U Set of solar panel sites u ∈ U
B Set of bio-refineries sites b ∈ B
X Indicator for processed rice
Y Indicator for rice bran
P Set of products p ∈ {X, Y}
G Indicator for mains electricity
R Set of energy sources r ∈ R={ mains electricity, solarpanel, bio-refinery}
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Parameters:
f cjj2 Fixed cost for launching new distribution center j2
f css Fixed cos t for launching solar panel site s
f coo2 Fixed cost for launching recycling distribution center o2
f cbb Fixed cost for launching bio-refinery b

p̃rmpmt
Cost of purchasing each kg of p-type product from market m (traditional purchase)
during period t

p̃r f p f t
Cost of purchasing each kg of p-type product from factory f (online shopping)
during period t

pcap fp f t Production capacity of p-type product in factory f during period t
cpai Cost of production per kg of rice plant for farmer i
c̃taxr Tax on consumption per unit of electricity supplied from source r

c̃ptp f r
Production cost per kg of p-type product in factory f, whose electricity is supplied
from source r

chjj t Cost of per kg unprocessed rice maintenance at distribution center j during period t
CT Cost of transporting by vehicle per kilometer
disaij Distance between producer i and distribution center j
disbj f Distance between distribution center j and rice factory f
disc f v Distance between rice factory f and pharmaceutical industry v
disd f k Distance between rice factory f and toiletries industry k
dise f m Distance between rice factory f and market m
dis f f c Distance between rice factory f and customer c
disgmc Distance between market m and customer c
dishio Distance between producer i and recycling center o
disioi Distance between recycling center o and producer i
disjib Distance between producer i and bio-refinery b
disk f b Distance between rice factory f and bio-refinery b
capit′ Product’s production capacity by producer i during period t′

caprrt Max energy level supplied from source r during period t
d̃ctpct Demand for p-type product by consumer c in traditional purchase during period t
d̃copct Demand for p-type product by consumer c in online shopping during period t
dciit Demand for compost by farm i during period t
dvvt Demand for rice bran by pharmaceutical industry v during period t
dkkt Demand for rice bran by toiletries industry k during period t
ER Electrical energy required to process per kg of rice
M A very large positive number
η Paddy to husk conversion rate
δ Rice husk to electrical energy conversion rate in bio-refineries
λ Straw to electrical energy conversion rate in bio-refineries
ψ Straw to compost conversion rate
cpoo Cost of production per kg of compost at recycling center o
πoo CO2 quantity released from constructing recycling center o
πss CO2 quantity released from constructing solar panel s
πbb CO2 quantity released from constructing bio-refinery b
RF Fuel required for vehicle per travel per k
capv Capacity of vehicle
β Rice plant to paddy conversion rate
1− β Rice plant to straw conversion rate
θp Paddy to product of type-p conversion rate

f jj2
Number of fixed job opportunities created by constructing new distribution
centers j2

V JIi
Number of variable job opportunities created by producing per kg of product on
farm i

V JQp f
Number of fixed job opportunities created by producing per kg of product p in
factory f
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Decision Variables
XSert Amount of electrical energy that should be supplied from source r during period t
Xhjjt Quantity of paddy rice stored in the distribution center j during period t

Xaijt′
Quantity of rice plant transferred from producer i to distribution center j during
period t′

Xbj f t
Quantity of paddy rice transferred from distribution center j to rice factory f during
period t

Xc f vt
Quantity of rice bran transferred from rice factory f to pharmaceutical industry v
during period t

Xd f kt
Quantity of rice bran transferred from rice factory f to toiletries industry k during
period t

Xep f mt
Quantity of type-p product transferred from rice factory f to market m during
period t

X fp f ct
Quantity of type-p product transferred from rice factory f to customer c during
period t

Xgpmct Quantity of type-p product transferred from market r to customer c during period t

Xhiot′
Quantity of compost transferred from producer i to recycling center o during
period t′

Xioit Quantity of compost transferred from recycling center o to producer i during period t
Xjibt Quantity of rice straw transferred from farm i to bio-refinery b during period t
Xk f bt Quantity of rice bran transferred from rice factory f to bio-refinery b during period t
Xqit′ Amount of rice plant produced by producer i during period t′

Xrh f prt
Quantity of type-p product produced from rice factory f using source r during
period t

XSert Quantity of electrical energy that should be supplied from source r during period t

Variables Zero and One:
Wj if distribution center j is established, 1
Vs if solar panel site s is established, 1
Zb if bio-refinery b is established, 1
Qo if recycling center o is established, 1

Appendix A

Table A1. The proposed priority-based decoding procedure of segment 2.

For t = 1 to T
Inputs
J = set of distribution centers
F = set of rice factories
D( f , t) = capacity of rice factories f in period t
Ca(j, t) = capacity of distribution center j in period t
V(J + F) = encode solution of period t
Dis(j, f ) : distance between nodes
————————————————————————————–
Outputs:
yaloc(j, f , t) = amount of shipments between node j and f in period t
Em(j, f , t) = amount of CO2 emission caused by transferring quantity

by vehicle between nodes
INV(j, t) = amount of remained goods in distribution center j at period t
——————————————-
Ca(j, t) = Ca(j, t) + INV(j, t− 1)
step1 = yaloc(j, f , t) = 0 j ∈ J, f ∈ F

while ∑iCa(j,t) > 0 or ∑iD(f,t) > 0
step2: select the value of first column of first sub-segment J for j index)
select the value of first column of first sub-segment F for f index
step3 : yaloc(j, f , t) = min(Ca(j, t), D( f , t))
Update demands and capacities
Ca(j, t) = Ca(j, t) − yaloc(j, f , t) , D( f , t) = D( f , t)− yaloc(j, f , t)
step4 : i f Ca(j, t) = 0 then V(J, F) = 0;
if D( f , t) = 0 then V(J, F) = 0;
End while
step5 : Em(j, f , t) =

(
yaloc(j, f , t)/Capv × RF × Disj f

)
step6 : INV(w, t) = Ca(w, t)
End for
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Table A2. The proposed priority-based decoding procedure of segment 3.

For t = 1: T
Inputs:
F = set of rice factories
P = set of product
L = set of all customers
pcap(p, f , t) = Production capacity of rice factory f for product p in period t
D(p, l, t) = demand of customer l in period t
V(F + L) = Encode solution of period t
Dis( f , l): distance between nodes
——————————————————————————————————-
Outputs:
zaloc(p, f , l, t) = amount of product p shipments between nodes f and l in period t
Em( f , l, t) = amount of CO2 emission caused by transferring quantity

by vehicle between nodes
TK(p, f , t) = number of created job opportunities thorough production of product p in factory
f in period t
——————————————————————————————————–
Step1 = zaloc(p, f , l, t) = 0 f ∈ F, l ∈ L
while ∑

i
pcap(p, f , t) > 0 or ∑

i
D(p, l, t) > 0

step2: select the value of first column of first sub− segment F for f index
select the value of first column of first sub− segment L for l index

step3 : zaloc(p, f , l, t) = min(pcap(p, f , t), D(p, l, t))
Update demands and capacities
pcap(k, t) = pcap(p, f , t)− zaloc(p, f , l.t) , D(p, l, t) = D(p, l, t)− zaloc(p, f , l, t)
step4 : if pcap(p, f , t) = 0 then V(K, L) = 0;
i f D(p, l, t) = 0 then V(K, L) = 0;
End while
for p = 1
for k = 1
Step5 : Em( f , l, t) =

(
zaloc(p, f , l, t)/Capv × RF × Dis f l

)
Step6 : let Xp(p, f , t) = ∑

l∈L
zaloc(p, f , l, t) and TK(p, f , t) = Xp(p, f ,t)

pcap(p, f ,t)

End for

Table A3. Pseudo-code of RSO algorithm.

Initialize RSA parameters α, β, etc.
Initialize the solutions’ positions randomly. X : i = 1, . . . , N.
While (t < T ) do
Calculate the Fitness Function for the candidate solutions (X).
Find the Best solution so far.
Update the ES using Equation (51).
For (i = 1 to N) do
For (j = 1 to n) do
Update the η, R, P and values using Equations (49), (50) and (52), respectively.
If (t ≤ T

4 ) then
xi,j(t + 1)= Bestj(t)− ηi,j(t)× β− Ri,j(t)× randt
Else if (randt ≥ T

4 and t < T
2 ) then

xi,j(t + 1)= Bestj(t)× xr1,j × ES(t)× randt
Else if (t > T

2 , t ≤ 3T
4 ) then

xi,j(t + 1) = Bestj(t)× Pi,j(t)× randt
Else
xi,j(t + 1)= Bestj(t)− ηi,j(t)× ε− Ri,j(t)× randt
End if
End for
End for
t = t + 1
End while
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Table A4. Distance between mentioned cities of Mazandaran province (KM).

Behshahr Neka Sari Juybar Qaemshahr Pol
Sefid Savadkooh Babolsar Babol Mahmood

Abad

Behshahr - 23 46 66 62 116 110 106 82 135
Neka - - 23 37 43 93 90 83 63 112
Sari - - - 20 20 70 65 60 40 89

Juybar - - - - 20 70 65 34 43 75
Qaemshahr - - - - - 50 45 40 20 69

Pol Sefid - - - - - - 10 90 70 119
Savadkooh - - - - - - - 86 65 110

Babolsar - - - - - - - - 20 41
Babol - - - - - - - - - 49

Mahmoudabad - - - - - - - - - -

Table A5. Tuning other parameters of model.

Parameters Values Units Parameters Values Unit

capait
Uniform

(7000,8000) Kilogram capff Uniform (70,80) Ton

chjt Uniform (70,80) Dollar per Ton pbb Uniform (300,350) Kilogram
cpai Uniform (600,650) Dollar per Ton cpjj Uniform (55,65) Dollar per Ton

dctp1ct Uniform (400,500) Kilogram dctp2ct Uniform (30,35) Ton
dcop1ct Uniform (350,400) Kilogram dcop2ct Uniform (25,30) Ton

dkkt Uniform (30,40) Kilogram cpoo Uniform (200,300) Dollar per Ton
duut Uniform (20,30) Kilogram diit Uniform (200,300) Kilogram
dmmt Uniform (20,30) Kilogram capjj Uniform (20,30) Ton

pcappft Uniform (90,100) Ton πss Uniform (200,220) Kilogram
caprrt Uniform (20,100) Megawatt hour πoo Uniform (200,220) Kilogram
ctaxr Uniform (15,20) Dollar per Megawatt hour vii Uniform (15,20) Person per ton

prmpmt Uniform (2,5) Dollar per Kg fcjj2 Uniform (3,4) Person

prfpft Uniform (1.5,4.5) Dollar per Kg fcss
Uniform

(70,000,80,000) Dollar

πbb Uniform (200,220) Kilogram fjoo2
Uniform

(5000,6000) Dollar

cpoot Uniform (200,220) Dollar per ton fcbb
Uniform

(500,000,600,000) Dollar

poo2 Uniform (400,450) Kilogram fjbb Uniform (4,5) Person
pss Uniform (100,150) Kilogram VJQpf Uniform (10,12) Person per ton

Table A6. The orthogonal array L9 and computational results for MOSA.

Run Npop Maxit T0 Alpha Response

1 1 1 1 1 2.49 × 10−5

2 1 2 2 2 2.62 × 10−5

3 1 3 3 3 2.58 × 10−5

4 2 1 2 3 2.53 × 10−5

5 2 2 3 1 1.74 × 10−5

6 2 3 1 2 1.68 × 10−5

7 3 1 3 2 1.21 × 10−5

8 3 2 1 3 1.45 × 10−5

9 3 3 2 1 1.32 × 10−5
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Table A7. The orthogonal array L9 and computational results for MOPSO.

Run Npop Maxit Phi1 Phi2 Response

1 1 1 1 1 1.54 × 10−5

2 1 2 2 2 1.36 × 10−5

3 1 3 3 3 1.33 × 10−5

4 2 1 2 3 1.73 × 10−5

5 2 2 3 1 1.28 × 10−5

6 2 3 1 2 1.09 × 10−5

7 3 1 3 2 1.03 × 10−5

8 3 2 1 3 1.3 × 10−5

9 3 3 2 1 1.22 × 10−5

Table A8. The orthogonal array L9 and computational results for MOGWO.

Run Npop Maxit IR Response

1 1 1 1 1.75 × 10−5

2 1 2 2 2.11 × 10−5

3 1 3 3 3.06 × 10−5

4 2 1 2 2.94 × 10−5

5 2 2 3 1.77 × 10−5

6 2 3 1 1.88 × 10−5

7 3 1 3 1.19 × 10−5

8 3 2 1 1.32 × 10−5

9 3 3 2 1.63 × 10−5

Table A9. The orthogonal array L9 and computational results for MORSO.

Run Npop Maxit Alpha Beta Response

1 1 1 1 1 2.92 × 10−5

2 1 2 2 2 2.57 × 10−5

3 1 3 3 3 1.67 × 10−5

4 2 1 2 3 1.59 × 10−5

5 2 2 3 1 1.63 × 10−5

6 2 3 1 2 1.27 × 10−5

7 3 1 3 2 1.21 × 10−5

8 3 2 1 3 1.09 × 10−5

9 3 3 2 1 1.12 × 10−5
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