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Abstract. Understanding a visual scene incorporates objects, relation-
ships, and context. Traditional methods working on an image mostly
focus on object detection and fail to capture the relationship between
the objects. Relationships can give rich semantic information about the
objects in a scene. The context can be conducive in comprehending an
image since it will help us to perceive the relation between the objects
and thus, give us a deeper insight into the image. Through this idea, our
project delivers a model which focuses on finding the context present in
an image by representing the image as a graph, where the nodes will
the objects and edges will be the relation between them. The context
is found using the visual and semantic cues which are further concate-
nated and given to the Support Vector Machines (SVM) to detect the
relation between two objects. This presents us with the context of the
image which can be further used in applications such as similar image
retrieval, image captioning, or story generation.

Keywords: Scene Understanding · Context · Word2Vec · Convolution
Neural Network

1 Introduction

Computer Vision has a number of applications which needs special attention
of researchers such as semantic segmentation, object detection, classification,
localization, and instance segmentation. The work attempted in the paper lies
in the category of semantic segmentation. Semantic segmentation has two phases
segmentation, detection of an object and semantic, is the prediction of context.

Understanding a visual scene is one of the primal goals of computer vision.
Visual scene understanding includes numerous vision tasks at several semantic
levels, including detecting and recognizing objects. In recent years, great progress
has been made to build intelligent visual recognition systems. Object detection
focuses on detecting all objects. Scene graph generation [1] [2] [3] [4] recognizes
not only the objects but also their relationships. Such relationships can be rep-
resented by directed edges, which connect two objects as a combination of the
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subject predicate - object. In contrast to the object detection methods, which
just result in whether an object exists or not, a scene graph also helps in infusing
context in the image. For example, there is a difference between a man feeding
a horse and a man standing by a horse.

This rich semantic information has been largely unused by the recent models.
In short, a scene graph is a visually grounded graph over the object instances
in an image, where the edges depict their pairwise relationships. Once a scene
graph is generated, it can be used for many applications. One such is to find an
image based on the context by giving a query. Numerous methods for querying
a model database are based on properties such as shape and keywords have been
proposed, the majority of which are focused on searching for isolated objects.
When a scene modeler searches for a new object, an implicit part of that search
is a need to find objects that fit well within their scene. Using a scene graph to
retrieve the images by finding context has a better performance than comparing
the images on a pixel level. An extension to the above application is clustering
of similar images. Recent methods cluster the image by calculating the pixel-
to-pixel difference. This method does not generalize well and works on images
which are highly similar. Also, this method may lead to speed and memory
issues. The approach of scene graph infused with context can help to cluster the
images even if there is a vast pixel difference. This method is also translation
invariant, meaning, that a girl eating in the image can be anywhere in the image,
but the context remains the same. Since this method uses semantic information,
it enhances speed and memory.

The paper is structured in the following manner - Section II discusses the
related work done in this direction, highlighting the scope of work to design
a better solution. Importance and significance of work are discussed in section
III. Section IV is about the dataset available and used to perform experiments.
Section V discusses the solution approach followed by section VI which covers
finding of object and context interpretation using scene graph. Finally, conclud-
ing remark and future scope is discussed in section VII.

2 Related Work

The complete work is can be divided into two tasks Object detection and Con-
text interpretation. Hence, a plethora of papers have been studied to understand
the various approaches defined by researchers in order to achieve an efficient and
scalable outcome in both directions. Initially, in order to get an idea about deep
learning models used in the field of computer vision, paper [6] is studied. This
paper [6] covers the various deep learning models in the field of computer vi-
sion from about 210 research papers. It gives an overview of the deep learning
models by dividing them into four categories - Convolutional Neural Networks,
Restricted Boltzmann Machines, Autoencoder, and Sparse Coding. Additionally,
their successes on a variety of computer vision tasks and challenges faced have
also been discussed.
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In 2016, Redmon et. al. [5] delivers a new approach, You Look Only Once
(YOLO) for object detection by expressing it as a regression problem rather
than a classification problem. It utilizes a single neural network which gives the
bounding boxes coordinates and the confidence scores. Detection of context in
images is an emerging application. Various methods ranging from scene graph to
rich feature representation have been employed for the same. In 2018, Yang et. al.
have developed a model Graph RCNN [4] which understands the context of the
image by translating the image as a graph. A pipeline of object detection, pair
pruning, GCN for context and SGGen+ has been employed. Similar sort of work
is done by Fisher et. al. [7], they represent scenes that encode models and their
semantic relationships. Then, they define a kernel between these relationship
graphs to compare the common substructures of two graphs and capture the
similarity between the scenes.

For effective semantic information extraction, Skipgram [8] model has been
studies works for learning high quality distributed vector representation. In ad-
dition to this, several extensions [9] of Skipgram have been experimented with
to improve the quality of vectors and training speed. Two models have been
proposed in the work [10] which is an extension to Word2vec to improve the
speed and time. Their architecture computes continuous vector representations
of words from very large data sets. Large improvements have been observed in
the accuracy at a much lower computational cost. The vectors are trained on a
large dataset of Google for 1.6 billion words. In 2018, a new method deep struc-
tural ranking was introduced which described the interactions between objects
to predict the relationship between a subject and an object. Liang et.al [11]
makes use of rich representations of an image visual, spatial, and semantic rep-
resentation. All of these representations are fused together and given to a model
of structural ranking loss which predicts the positive and negative relationship
between subject and object.

The work [12] aims to capture the interaction between different objects using
a context-dependent diffusion network (CCDN). For the input to the model, two
types of graphs are used - visual scene graph and semantic graph. The visual
scene graph takes into account the visual information of object pair connections
and the semantic graphs contain the rich information about the relationship
between two objects. Once the features from visual and semantic graphs are
taken, they are given as an input to a method called Ranking loss, which is a
linear function. Yatskar et. al. work [13] is an extension to the predicate and
relationship detection. It introduces a method where it focuses on the detection
of a participant, the role of the participants and the activity of the participants.
The model has coined the term “FrameNet” which works on a dataset containing
125,000 images, 11,000 objects, and 500 activities.

3 Importance and Significance of Work

This work is having its own importance and significance in varying application
due to the following:
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– An extension to the object detection by finding the underlying relationship
between object and subject. Object detection merely works on the presence
of the objects giving us partial information about the images. Context can
give us the true meaning of the image.

– Classifies the image as similar on the basis of the underlying context. Object
detection classifies the images as similar on the basis of the presence of
specific objects. However, the images can be quite different than each other
based on context. Incorporating the context will give a deeper insight into
an image.

– If the context is employed on prepositions as well as verbs (future work),
rich semantic information can be used to generate interesting captions and
stories related to images.

– No pixel-to-pixel level similarity/clustering calculation. One of the applica-
tions of incorporating context is to find similar images. Conventional tech-
niques involve pixel by pixel calculations, thus increasing the overhead. Scene
graphs save time by considering the visual and semantic features.

– Useful in query processing, image retrieval, story generation, image caption-
ing. Once the context is detected, it can be used in various applications like
query processing in search engines, image retrieval using captioning [14][15],
as well as story generation.

4 Datasets

Most famous datasets used for Scene understanding applications are MS-COCO
[16], PASCAL VOC , and Visual Genome, and Visual Relationship Detection-
VRD.

VRD dataset contains 5000 images, 100 object categories, and 70 predicates.
It is most widely used for the relationship detection for an object pair in testing
since it contains a decent amount of images. COCO [16] is large scale object
detection, segmentation, and captioning dataset. This dataset is used in several
applications- Object segmentation, Recognition in context, Super pixel stuff seg-
mentation. It has over 330K images (200K labeled), and 80 object categories.
Also, it has 5 captions per image which can be used for image captioning meth-
ods.

To perform the experiments, VRD dataset has been taken. Visual Relation-
ship Detection (VRD) with Language Priors is a dataset developed by Stanford
aiming to find the visual relationship and context in an image. The dataset
contains 5000 images with 37,993 thousand relationships, 100 object categories
and 70 predicate categories connecting those objects together. Originally, in the
dataset, we are given a dictionary file of training and testing data which we
convert into training set with 3030 images, test set of 955 images, and validation
set of 750 images.

Statistics of the number of objects and visual relationships in every image
is shown in Fig. 4 and Fig. 4 respectively. In Fig. 4, the file with an unusual
number of 134 relationships in image ’3683085307.jpg’.
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Fig.1. Statistics of the number of objects in images

Fig.2. Statistics of the number of objects detected by YOLO

5 Solution Approach

The purpose of this project is to extend the object detection techniques to find
context and hence, understand the underlying meaning of an image. Our idea
uses 2D images of various scenes which have objects interacting with each other.
The interaction can be in the form of prepositions like (above, on, beside, etc) or
activity form like (cooking, eating, talking, etc). The model considers the scenery.
The solution approach is basically divided into four modules. These modules are
clearly depicted in Fig. 5. The first phase is the object detection for which YOLO
object detector has been used. YOLO will provide an image with a bounding
box of detected objects. This will be used to identify the semantic and visual
features of the image. VGG-16 is used to generate visual features and Word2Vec
is used for semantic feature identification. These features are concatenated and
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given as input to a SVM which provides a probability distribution over all the
predicate classes. (see Fig. 5 and Fig. 5.1).

Object Detection The first step of the solution approach is to detect the
objects present in an input image. Recent research works have used various deep
learning approaches and models. These are developed in order to achieve high
efficiency and high accuracy for object detection. Approaches used in literature
include YOLO [5], R-CNN [16], Fast-RCNN [17], Faster-RCNN [18], Mask-
RCNN [20], and Single-Shot MultiBox Detector (SSD) [21].

Fig.3. Flow Diagram of Solution Approach

Here, YOLO (You Only Look Once) has been used for object detection. It has
an advantage that instead of using local filters, it looks at an image globally
and delivers results. YOLO is very fast since it treats frame detection as a
regression problem. The model consists of CNN similar to GoogleNet and instead
of using residual block 1*1 convolutional layers are used. With 24 convolutional
layers and pre-trained on ImageNet dataset, the model is trained for 135 epochs
on PASCAL VOC dataset with a dropout of 0.5. Due to 1*1, the size of the
prediction is the same as the feature space. The dimension of the feature space
is in the format: 4 box coordinates, 1 objectness score, k class score for every
box on the image. Object score represents the probability that an object is
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contained inside a bounding box. Class confidences represent the probabilities
of the detected object belonging to a particular class. YOLO uses softmax for
class scores.

5.1 Semantic and Visual Embedding

Once the objects are detected, pairs for every object are created giving us nC2
number of visual relationships. For the visual features, the bounding box of sub-
ject and object are taken. The predicate is the intersection over union (IoU)
of subject and object bounding boxes. All the three bounding boxes are con-
catenated and given to a VGG16 network with predicate word as the ground
truth label. VGG16 is used for the classification task for the images. Its last
layer provides good visual representations for the objects in an image. Hence,
it is extracted to get visual relationship features for the concatenated bounding
boxes. Further, for the semantic embedding, Word2Vec is used over the subject
and object word. It is a powerful two layer neural network that can convert text
into a vector representation. Word2Vec converts the subject and object word
into a 300 sized feature representation which is concatenated and given to a
neural network. The output layer before the application of activation function
is extracted to get the semantic embedding for the visual relationship. The gen-
erated semantic embedding are stored in a dictionary format. The index is the
object id and value is the embedding. We store the object, predicate and their
embedding (found by word2vec) in the following formats shown in Table 1.

Fig.4. Phase Division for object detection and context interpretation

Considering that the visual and semantic embedding take the rich information
about the image which is not limited to only object detection, but also to the
semantic information present in an image, other information which can also be
taken is the spatial feature representation which considers the location of an
object in an image with respect to the other objects.
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Table 1. File details of object, predicate, and embedding

File Name Function Dictionary Format

Objects dict.pkl Hashing of object Index-Object Name

Predicate dict.pkl Hashing of predicates Index-Predicate Name

Objects embedding.pkl Objects Word2Vec embedding object name-word2vec
embedding

Predicate embedding.pkl Predicates Word2Vec embedding predicate name-word2vec
embedding

5.2 Predicate Detection

The type of predicates in the dataset include the spatial predicates like above,
beside, on, etc. Predicates can be of many types depicting the spatial context
and activity context like cooking, eating, looking, etc. After the semantic and
visual embeddings are extracted, the embedding is concatenated for a visual
relationship in an image. Some other methods can also be used when using both
the semantic and visual features which include, multiplying both the feature,
however, this requires both the representation to be of the same size. The dataset
includes around 70 predicates. Since the classes are quite distinct from each
other, a decision boundary between the classes would serve as a good strategy
to classify between the predicate classes and SVM is a powerful discriminative
model to achieve this task. It is used as a classifier to give a class distribution
probability over all the 70 classes. The class with the maximum probability is the
predicted class. For the scene graph, top 3 predicates are taken. The predicate
detected depicts the context shared between the subject and object and thus
delivers the meaning of the image.

5.3 Scene Graph Generation

An image contains k number of visual relationships of the format (subject, pred-
icate, object). The predicate was detected in the previous step. Now, the scene
graph is generated with nodes as objects/subjects and edges as the predicate.
Here, we use a directed scene graph so that there is a differentiation between
subject and object.

For example: for a statement, a person eating food, the relationship format
of (subject, predicate, object) would be (Person, eating, Food). Here, the person
is the subject, food is the object, and eating is a predicate. If an undirected edge
is used, this statement loses the distinctive property of the person being subject
and food being object. The roles can be reversed due to undirected edges leading
to erroneous relationships. Therefore, the use of directed edges is preferred. After
the generation of the scene graph, it can be traversed accordingly to generate
captions or summary of an image. The scene graph can also be termed as a
context graph.
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6 Findings

An outcome for a sample VRD dataset image is shown in Fig. 6. The image after
YOLO is shown in Fig. 6 which shows the annotated image after YOLO object
detection. The objects detected in the shown image in the boundary box are
Person, wheel, cart, plant, bike, shirt, basket, and pants. Mean Average Precision
(MAP) is taken as a performance measure to test the outcome. It considers the
average precision for recall of the detected objects and is a popular metric for the
object detectors. For the training set, YOLO had an object detection accuracy
of 55 MAP.

Fig.5. Input image from the VRD-Dataset

Fig.6. Annotated Image using YOLO Object Detector

Finally, a scene graph is generated based on these YOLO detected visual fea-
tures and semantic features. The scene graph of Fig. 6 is depicted in Fig. 6.
Relationships identified for which scene graph is formed are shown in Table 2
showing the scene description using the subject predicate-object relationship.

The loss in the Neural network for a semantic feature and CNN for the visual
feature is shown in Fig. 6 and Fig. 6 respectively. It is clearly observable in
Fig. 6 that the training loss dropped with every epoch. The validation, however,
increased after the 50th epoch more than the training. The point where the
validation loss increases the training loss depicts the point where the model
starts to overfit. Hence, the weights of the network at the 50th epoch were taken
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for further processing. One of the possible reason of overfitting can be attributed
to the dataset being small. The model tries to fit to this small dataset and does
not learn the ability to generalize well.

Fig.7. Scene Graph Result of the input image

Table 2. Details about scene, objects, and their relationships

Scene Relationships (s, p, o)

Wheel under cart (Wheel, under, cart)

Basket on top cart (Basket, on top, cart)

Plant in basket (Plant, in, basket)

Wheel under bike (Wheel, under, bike)

Pants on person (Pants, on, person)

Person on bike (Person, on, bike)

Person has shirt (Person, has, shirt)

Fig.8. Training and Validation Loss for Visual Features
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Fig.9. Training and Validation Loss for Semantic Features

The CNN and Neural Network were trained till they reached an accuracy of 95%
and 99% respectively. The accuracy for predicate detection from SVM came out
to be 60.57%. The SVM was run for a total for 100 epochs. In our previous ap-
proach of scene graph generation using Word2vec solely, the accuracy reached till
40% only. However, once we incorporated the visual features also, the accuracy
increased to 60%

7 Conclusion and Future Scope

Our work leverages the techniques of object detection by finding out the context
of the image in addition to the detected object. We are detecting the context
from the visual and semantic features of an image. This is achieved by the
application of deep learning models YOLO for object detection and Word2Vec
for semantic feature representation generation. A neural network is used for the
semantic feature of image and VGG16 for the visual feature generation. Context
can be used to find out the subtle meaning of the image. Future work includes
extending the context to verbs like cooking, eating, looking, etc since our work
is covering only the preposition predicates such as on, above, etc. Moreover, in
addition to the semantic and visual features, spatial features can be incorporated
which will be helpful in determining the location of the objects. Lastly, better
object detection models like Faster-RCNN can be employed for more accurate
object detection in the first step because if an object is not detected in the first
step, it can’t be used for processing of visual relationships in the further stages.
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