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Abstract—This paper studies the vibration rejection problem
of active suspension discrete-time systems under in-vehicle net-
works and designs a controller of feedforward and feedback
optimal vibration rejection. Based on the ground displacement
power spectral density, an discrete-time exosystem is employed
to estimate the random road disturbances. A two degree of
freedom discrete-time system is introduced to describe the ac-
tive suspension under in-vehicle networks. Then, the original
vibration control is formulated as the optimal control for a
linear discrete-time system affected by external disturbances.
The feedforward and feedback optimal vibration rejection law
(FFOVRL) is designed by solving the Riccate and Stein equations,
in which the feedforward term incorporates the information of
the random road disturbances and the feedback loop includes the
status of suspension system. The feasibility and effectiveness of
the proposed approaches are validated by an active suspension
structure.
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I. INTRODUCTION

Vehicle suspension plays an important role in vehicle
design, which goes through three states: passive [1], [2],
semi-active [3], and active suspension systems [4]–[6], in the
last few decades. It is well known that active suspension
systems can provide the optimization performances to ensure
the driving safety, vehicle handling, and ride comfort by using
power sources, such as compressors and hydraulic pumps.
Active suspension system can turn into practical ones by using
low consumption elements. What’s more, the vibration of the
vehicle body could be diminish effectively in active suspension
systems, where the suspension characteristics can be adjusted
by using power sources while driving to accommodate the pro-
file of the road [7]. With the low consumption and preferable
vibration, the theoretical and experimental research effort of
active suspension has been considered in the last few decades,

such as H∞ control [6], [8], sliding mode theory [9], adaptive
control [10], and fuzzy control [11].

With the development of communication networks in ve-
hicle, in-vehicle networks have been widely used in vehicle
systems [12], such as Controller Area Network (CAN), Local
Interconnect Network, Media Oriented Systems Transport, and
so on. Actually, in-vehicle networks could be viewed as a high-
speed networks, in which the information, driving state and
road roughness, could be provided and communicated precise-
ly. Then, the information provision for vehicle’s behaviours is
guaranteed. Therefore, it is necessary to design the model and
research the control algorithm for active suspension vehicle
under in-vehicle networks.

In practical application, there are three critical elements
in any active vehicle suspension design and control: ride
comfort, tire deflection, and suspension deflection. As is well
known, ride comfort is mainly related to the road roughness
disturbances. Vehicle handling and driving safety is mainly
depended on the uninterrupted contract of wheels. At the
same time, suspension deflection may result in deterioration
of ride comfort and even structural damage. In order to ensure
the performance index within an acceptable level, the road
roughness disturbances must be considered in the design of
active suspension. In order to reduce the influences caused by
the road roughness disturbances in vehicle suspension system,
the vibration rejection problem for vehicle active suspension
system could be formulated to ensure the ride comfort, tire
deflection, and suspension deflection at an acceptable level [8],
[12]. It should be noted that the irregular road disturbances
could be estimated as the random process with a ground
displacement power spectral density [13].

This paper investigates the feedforward and feedback op-
timal vibration rejection for an active vehicle suspension
discrete-time system under in-vehicle networks. The proposed
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FFOVRL is developed to reduce the random road disturbances.
First, the random road disturbances are viewed as an exosystem
based on the characters of road disturbances. The active sus-
pension under in-vehicle networks is simplified into a discrete-
time system under external disturbances. Then, the original
vibration control is formulated as the optimal vibration control
for discrete-time active suspension system under in-vehicle
networks. The FFOVRL is obtained by using the minimum
principle, in which the status of suspension system construct
the feedback term, and the information of the random road
disturbances incorporates the feedforward term. A numerical
example of the FFOVRL law for an active vehicle suspension
with under road disturbances is presented to demonstrate the
effectiveness of the FFOVRL law.

The rest of paper is organized as follows. Section II presents
an introduced exosystem to describe the random irregular road
disturbances. The model of active suspension discrete-time
systems under in-vehicle networks and quadratic performance
index are introduced in Section III. Section IV presents the
FFOVRL based on the minimum theory. Numerical examples
are given in Section V to demonstrate the effectiveness of the
FFOVRL. The last section gives the conclusion of the paper.

II. IRREGULAR ROAD ROUGHNESS DISTURBANCES

The structures of vehicle suspension are exposed to sever
environment and irregular road roughness disturbances ac-
tions on the vehicle suspension cause continuous vibration
of structure. In previous studies, a stochastic process with a
ground displacement power spectral density can be introduced
to express the irregular road disturbances as [14], [15]:

Gd(Ω) =

 Gd(Ω0)
(

Ω
Ω0

)−n1

, Ω ≤ Ω0

Gd(Ω0)
(

Ω
Ω0

)−n2

, Ω > Ω0

(1)

where Ω0 = 1/2π is a reference frequency, Ω is a spatial
frequency with dimension m−1, which donates the wave
numbers per meter. The road roughness constants are presented
as n1 and n2, in general, n1 = 2 and n2 = 1.5.

Taken the wheel’s characteristic of low pass filtering into
consideration, the irregular road disturbances with low fre-
quency could be considered emphatically. Then, the finite
sum of Fourier series can approximately estimate the road
displacement input zr(t) from the irregular road disturbances:

zr(t) =
p∑

i=1

ξi(t) =
p∑

i=1

ϕi sin(iω0t+ θi),

i = 1, 2, . . . , p,
(2)

where v0 is the speed of the vehicle, ω0 = 2πv0/l, l is the
length of the road segment, p is used to restrict the range of
frequency. ϕj =

√
2Gd(j∆Ω)∆Ω, ∆Ω = 2π/l, and the initial

phase θj ∈ [0, 2π) is a random variable following a uniform
disturbance.

In the following, an exosystem is introduced to generate the
irregular road roughness disturbances. Denote the following
state vectors:

w(t) = [w1(t), · · · , w2p(t)]
T

= [ξ1(t), · · · , ξp(t), ξ̇1(t), · · · , ξ̇p(t)]T
(3)

Then, the total irregular road disturbance vector v(t) can be
expressed by the following exosystem:

ẇ(t) = Gw(t),
v(t) = Fw(t),

(4)

where
Ḡ =

[
0 I

G̃ 0

]
,

F = [ 0, · · · , 0,︸ ︷︷ ︸
p

1, · · · , 1︸ ︷︷ ︸
p

]

G̃ = diag
{

−ω2
0 , · · · , −(pω0)2

} (5)

Noting that, the rank of
[ FT (FG)T · · · (FG2p−1)

T ]
T
= 2p, the pair (F, Ḡ) is

observable.
It should be noted that the input of irregular road roughness

disturbance could be estimated by observer. Therefore, it
is necessary to obtain the form of discrete-time system of
road roughness disturbances under in-vehicle networks. Let T
denote the sampling period, one gets the discrete-time form of
Eq. (5)

w(k + 1) = Gw(k)
v(k) = Fw(k)

(6)

where G = eḠT . Assume that (G,F ) is completely observable.

III. PROBLEM STATEMENT

In this section, The motion equation of the active vehicle
suspension is given. For simplicity, the active vehicle suspen-
sion is modeled as a two-degree-freedom quarter-car suspen-
sion system. Based on the mechanism of the active vehicle
suspension system under in-vehicle networks, the discrete-time
models with the fixed sampling period is modeled.

First, consider a simple quarter-car active vehicle suspen-
sion system that has been simplified into a TDOF system as
shown in Fig. 1.

Fig. 1. The Simple Active Suspension System

The motion of simple quarter-vehicle active suspension
could be expressed as:{

u(t) = msz̈s(t) + cs[żs(t)− żu(t)] + ks[zs(t)− zu(t)]
−u(t) = muz̈u(t) + cs[żu(t)− żs(t)] + ks[zu(t)− zs(t)]
kt[zu(t)− zr(t)] + ct[żu(t)− żr(t)]

(7)
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where ms is the sprung mass; mu is the unsprung mass; cs and
ks are damping and stiffness of the passive suspension system,
respectively; kt and ct stand for compressibility and damping
of the pneumatic tire, respectively; zr(t) ∈ Rq is the road
displacement input; u(t) represents the active control force of
the suspension system. zs(t) and zu(t) are the displacements
of the unsprung and sprung masses, respectively.

As is well known, the purpose of the active suspension is to
minimize the sprung mass acceleration z̈s(t), the sprung mass
acceleration z̈s(t) in the vertical direction, and suspension
deflection zs(t) − zu(t). In order to satisfy the requirements
about ride comfort, road holding ability, and avoidance of rapid
deterioration, the controlled output yc(t) could be defined as:

ȳc(t) = [ z̈s(t) zs(t)− zu(t) zu(t)− zr(t) ]T (8)

Actually, it is unnecessary and uneconomical to observe full-
state of vehicle suspension. Therefore, the measured output
ym(t) is defined as

ȳm(t) =
[
zs(t)− zu(t) żs(t)

]T
(9)

Then, the variables of system state are defined as:

x̄1(t) = zs(t)− zu(t), x̄2(t) = zu(t)− zr(t)
x̄3(t) = żs(t), x̄4(t) = żu(t)

(10)

where x̄1(t) is the suspension deflection, x̄2(t) denotes the tire
deflection, x̄3(t) denotes the speed of sprung mass, and x̄4(t)
is the speed of unsprung mass.

The continuous-time model of simple quarter-car active
suspension equation can be described as:

˙̄x(t) = Āx̄(t) + B̄u(t) + D̄v(t)
ȳc(t) = Cx̄(t) + Eu(t)
ȳm(t) = C̄x̄(t)

(11)

where

Ā =


0 0 1 −1
0 0 0 1

−ks
ms

0 −cs
ms

cs
ms

ks
mu

−kt
mu

cs
mu

−(cs+ct)
mu



B̄ =


0
0
1

ms

− 1
mu

 , D̄ =


0
−1
0
ct
mu

 , x̄(t) =

 x̄1(t)
x̄2(t)
x̄3(t)
x̄4(t)



C =

 − ks
ms

0 − cs
ms

cs
ms

1 0 0 0
0 1 0 0

 , E =


1

ms

0
0


C̄ =

[
1 0 0 0
0 0 1 0

]
, v(t) = żr(t).

(12)

Consider the mechanism of the simple quarter-car active
suspension under in-vehicle networks, the controlled active
suspension can be depicted as Fig. 2.

Assume that the delays in ECU-Actuator and Sensor-ECU
equal to 0. Then, the discrete-time state space representation of
the system (5), obtained with a discretization period T , given
by:

x(k + 1) = Ax(k) +Bu(k) +Dv(k)
yc(k) = Cx(k) + Eu(k)
ym(k) = C̄x(k)
x(0) = x0

(13)

Fig. 2. Active Suspension under in-vehicle networks

where x(k), u(k), v(k) are the state variable, control law,
and random road disturbance, respectively, and where A =

eĀT , B =
∫ T

0
eĀtB̄dt,D =

∫ T

0
eĀtD̄dt.

It should be noted that the irregular road roughness distur-
bance v(k) will not tend to zero. Then, road disturbance vector
v(k) , the steady state of the state vector x(k) and the control
vector u(k) will not converge to zero synchronously. In this
case, the infinite-time average performance index was chosen
as:

J =

lim
N→∞

1
N

N∑
k=0

[
yTc (k)Qyc(k) + uT (k)Ru(k)

] (14)

where Q = diag(q1, q2, q3) and R is positive definite matrix.
Then, the objective of this present paper is formulated to

find a control u∗(·) to minimize performance index subject to
constrains (6) and (13).

IV. FFOVRL LAW

The efficient vibration control algorithm should not only
reduce the road roughness disturbances significantly but also
be economical. Thus, the FFOVRL is designed to reject the
road roughness disturbance. In this section, we will present the
detailed FFOVRL algorithm and prove the existence unique-
ness conditions of the FFOVRL.

In order to describe the proposed FFOVRL clearly, the
matrices are defined as follows:

R̃ = R+ ETQE, A1 = A−BR̃−1ETQC

Q1 = CTQC − CTQER̃−1ETQC,
(15)

Theorem 1: Consider the optimal vibration control problem
for active vehicle suspension discrete-time system under in-
vehicle networks described (7) and (13) with respect to the
quadratic performance indexes (14). The FFOVRL law unique-
ly exists and can be formulated as:

u∗(k) = −R̃−1
{
BTA−T

1 P̄ω(k) +[
ETQC +BTA−T

1 (P −Q1)
]
x(k)

} (16)

where P is the unique positive definite solution of the follow-
ing Riccati matrix equation

P = Q1 +AT
1 PS−1A1 (17)
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and P̄ is the unique solution of the following Stein matrix
equation

P̄ = AT
1 P̄G+AT

1 PS−1(DF −BS−1BT P̄G) (18)

where S = I +BR̃−1BTP .
Proof: Based on the necessary condition of the maximum

principle to Eqs. (6) and (13) with performance index (14), the
FFOVRL law can be described by

u∗(k) = −R̃−1
[
ETQCx(k) +BTλ(k + 1)

]
(19)

where λ(k) is the solution of the following two-point boundary
value (TPBV) problem{

x(k + 1) = A1x(k)−BR̃−1BTλ(k + 1) +DFω(k)
λ(k) = Q1x(k) +AT

1 λ(k + 1)
(20)

To solve the TPBV problem (20), let

λ(k) = Px(k) + P̄ω(k) (21)

Based on the Eqs. (20) and (21), one obtains
λ(k + 1) = A−T

1

[
(P −Q1)x(k) + P̄ω(k)

]
x(k + 1) =

S−1
[
A1x(k) + (DF −BR̃−1BT P̄G)ω(k)

] (22)

Substituting the first formula of Eq. (22) into (19), the FFOVC
law (16) is obtained. Rearranging Eqs. (20) and (22), one gets

λ(k) =
[
Q1 +AT

1 PS−1A1

]
x(k)+[

AT
1 P̄G+AT

1 PS−1(DF −BS−1BT P̄G)
]
ω(k)

(23)

By comparing the coefficients of Eqs. (21) and (23), the Riccati
matrix Eq. (17) and Stein matrix Eq. (18) are obtained.

It should be noted that the pair (A,B) is controllable and
the pair (A,C) is observable. Therefore, the matrix P is the
unique positive definite solution of Eq. (17) [16]. From Eqs.
(6) and the second formula of Eq. (22), one gets∣∣λi(S

−1A1)
∣∣× |λj(G)| < 1,

i = 1, 2, · · · , n; j = 1, 2, · · · , 2p; (24)

Then, P̄ is existent and unique solution of Stein matrix
equation (18) [17]. When P and P̄ are derived, λ(k) and
the FFOVRL u∗(k) could be obtain from Eqs. (16) and (21),
respectively. Then, the existent and unique of the FFOVRL
(16) are proved. The proof is completed.

V. SIMULATION

In this section, simulation experiments are shown to illus-
trate the effectiveness of the FFOVRL for the active suspension
systems.

The road displacement input is estimated as a random
process with a ground displacement power spectral density of
(1), in which the parameters of road roughness disturbance is
selected shown in Table I. Consequently, the road displacement
input zr(t) is displayed in Fig. 3.

The parameters of vehicle active suspension system model
are shown in Table II [18]. It should be noted that the
dimension of the control force is N .

TABLE I
THE PARAMETERS OF ROAD ROUGHNESS DISTURBANCE

Coefficient Value
Gd(Ω0) 256× 10−6m3

n1 2
n2 1.5
ω1 3.3144
ω2 33.1440

0 2 4 6 8 10
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (sec)
z
r 

(m
)

 Random Displacement of Road Disturbance

Fig. 3. Random Displacement of Road Disturbances

Then, under the in-vehicle networks with the sampling
period T = 0.08s, the matrix values of the discrete-time active
suspension system (13) are given by

A =


0.8754 0.2627 0.0734 −0.0661
0.1110 0.7358 0.0059 0.0668
−0.3290 −0.0628 0.9779 0.0206
2.5350 −6.0630 0.1760 0.5589

 ,

B =


0.0292
−0.0260
0.0770
−0.5934

× 10−4, D =


−0.0073
−0.0727
0.0015
0.2651

 ,

(25)

Assume that sprung mass acceleration z̈s(t), suspension deflec-
tion zs(t)−zu(t) and tire deflection zu(t)−zr(t) are of equal
importance in ride comfort. So we select q1 = q2 = q3 = 106

in performance index (14).
The curves of sprung mass acceleration, suspension deflec-

tion, and tyre deflection are presented in Figs. 3-5, respectively.
The comparison results between FFOVRL law and open-loop
system are shown. Also, the root-mean-square (RMS) values of

TABLE II
THE PARAMETERS OF VEHICLE ACTIVE SUSPENSION

Coefficient Value Unit
Sprung mass ms 180 kg

Unsprung mass mu 25 kg
Stiffness ks 16000 N/m

Compressibility of the pneumatic tire kt 190000 N/m
Damping of the active suspension system bs 1000 N/m



1432014 Sixth World Congress on Nature and Biologically Inspired Computing (NaBIC)

TABLE III
COMPARISON OF RMS VALUES OF PERFORMANCE CRITERIA

Coefficient z̈s(m2/s) zs − zu(m) zu − zr(m)
Optimal Control 0.2832 0.0492 0.0242

Open-Loop 0.7003 0.1732 0.0730
Reduced Rate (%) 59.22 71.59 66.84

performance index are presented in Table III for FFOVRL and
open-loop system, which include sprung mass acceleration,
suspension deflection, and tyre deflection.
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Fig. 4. The Curves of Sprung Mass Acceleration
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Fig. 5. The Curves of Suspension Deflection

From Figs. 4-6 and Table III, it can be clearly seen that
the vibration process of the active suspension is significantly
reduced by the FFOVRL. The simulation result depicted in
Table 3 shows that the performance index is much better than
open-loops. Then, the irregular road roughness disturbances
could be rejected significantly by using FFOVRL. Also, the
presented FFOVRL is economical.
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Fig. 6. The Curves of Tyre Deflection

VI. CONCLUSION

This paper has been concerned with the development of op-
timal vibration control for the vehicle active suspension subject
to road roughness disturbances under in-vehicle networks. The
improvements in design of exosystem for producing the irreg-
ular road roughness disturbances, and the control algorithm
implementation are presented under in-vehicle networks. The
exosystems is determined by the dynamic equation of the irreg-
ular road disturbances. Another significant improvement is on
the FFOVRL. FFOVRL can reduce the vibration significantly
and keep economical in an optimal fashion under in-vehicle
networks. A numerical example of the FFOVRL for an active
vehicle suspension is studied.
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