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Abstract This paper presents the performance analysis of a
newly developed elitist teaching–learning-based optimization

algorithm applied with an efficient higher-order Jordan Pi-

sigma neural network (JPSNN) for real-world data classifi-
cation. Teaching–learning-based optimization (TLBO) algo-

rithm is a recent metaheuristic, which is inspired through the

teaching and learning process of both teacher and learner. As
compared to other algorithms, it is efficient and robust due to

its non-controlling parameter adjustments feature. Elitist

TLBO is an improved version of TLBO with the addition of
elitist solutions, which makes it more efficient. During the

experiment, first the TLBO and then ETLBO algorithm are

applied with only Pi-sigma neural network and its perfor-
mance has been comparedwith othermethods such asGAand

PSO. Then, the ETLBO algorithm is applied with JPSNN and

found better results over othermethods. The proposedmethod
has been tested with real-world benchmark datasets consid-

ered from UCI machine learning repository, and the

performance has been compared with all seven approaches
along with other HONN to prove the effectiveness of the

method. Simulation results and statistical analysis show the

superiority in the performance of the proposed approach as
well as prove the potentiality over other existing approaches.

Keywords ETLBO ! TLBO ! JPSNN ! PSNN ! PSO ! GA

1 Introduction

With the successive development of science and technology,

the real-life optimization problems are becoming more com-

plex in nature. The earlier developed traditional optimization
algorithms fail to explicate the exact and real solution of the

nonlinear and non-differential problems in large search space.

The basic limitations to these algorithms are early conver-
gence, use of complicated stochastic functions and higher-

order derivatives in solving the equations. During last few

decades, some popular optimization algorithms have already
shown their effectiveness in solving various real-life prob-

lems. In 1992, Holland [1] at University of Michigan and

Goldberg (1989) [2] developed themost popular evolutionary
algorithm called genetic algorithm. As compared to the gra-

dient search methods, GA performs well at local optima and
has lesser chance to trap at local minima positions. Then after,

Kennedy and Eberhart [3] developed a stochastic swarm

intelligence-based algorithm inspired by the nature of birds
called particle swarm optimization (PSO). It is being consid-

ered as one of the popular stochastic and heuristic-based

search methods till date. Several equivalent variations have
also been developed related to PSO such as ant colony opti-

mization (ACO) [4, 5], artificial bee colony optimization

(ABC) [6, 7] and fish schooling algorithm [8]. Besides these,
some nature-inspired algorithms such as harmony search [9],
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gravitational search [10, 11], firefly algorithm [12], and glow

swarmalgorithm [13, 14], and physical-based algorithms such
as electromagnetism-like algorithm (ELA) [15, 16], artificial

physics optimization algorithm(APO) [17], big bang–big

crunch optimization (BBCO) [18, 19], charged system search
(CSS) [20, 21], particle collision algorithm (PCA) [22], and

central force optimization (CFO) [23, 24] have been intro-

duced during the last decade. Although these techniques are
used to solve many of the complex problems, but still these

have some major issues in the convergence criteria, when
these are being single handedly applied. This is due to the

extensive use of controlling parameters such as population

size, environmental conditions and no. of iterations. There-
fore, their variations have been developed by integrating some

modifications in the parameters or any form of hybridization

algorithms to explore their own problem-solving capacity. As
any major change in the parameter selection may change the

function of the whole algorithm, so hybridization is not the

exact solution for solving these complex problems. We have
proceeded with this facet in our work. TLBO is a parameter-

free natural metaheuristic, inspired by the teaching–learning

process of teacher and learner. The basic principle of TLBO
relies on the effect of a learner after the teachingof a teacher.A

teacher is a person who has greater knowledge than his

learners. The teacher is supposed to share his knowledge with
the learner in such a way that the learner’s outcome must be a

reflection of the teaching process of the teacher. If a teacher is

giving his best effort to train the learner, then the learner may
have a chance to secure good result. However, the learners

also share their knowledge among their friends, and increase

in knowledge may be possible in that direction.
Although, some major contributions of TLBO have been

made in the field of mechanical engineering and electrical

engineering, etc., it has not so much widely been used to
solve data mining problems. After a rigorous search of all

the TLBO papers in various well-known databases such as

Science Direct, Springer Link and IEEE, it was found that
TLBO is marginally functioning well in various real-life

applications such as economic load dispatch, power han-

dling, electric vehicles, sequence planning, robotics and
CAD. The detailed literature survey on TLBO in various

application areas is illustrated in Sect. 2.

So, a substantial amount ofwork is needed to be carried out
in the prolific areas of data mining such as classification,

clustering and forecasting to show the efficiency of this

recently developed population-based algorithm. In this work,
a novel Elitist teaching–learning-based optimization

(ETLBO) algorithm has been incorporated with a higher-

order Jordan Pi-sigma neural network for data classification.
ETLBO is quite free from the controlling parameters as

compared to other algorithms. The rest of the paper is orga-

nized as follows. Section 2 reviews some previous literatures
based on TLBO and ETLBO. The basic preliminaries such as

TLBO, ETLBO, PSNN and JPSNN are briefly explained in

Sect. 3. The proposed ETLBO–JPSNN explained in Sects. 4
and 5 gives the detailed ideas about the experimental setup

with simulating environment. Section 6 presents the result

analysis of the proposed work, and Sect. 7 describes the
comparative results of another HONN with the proposed

classifier. Statistical analysis of all the classifiers with their

comparative results is demonstrated in Sect. 8. Finally,
Sect. 9 concludes the work with some future directions.

2 Literature survey

In this section, some important literatures of TLBO have been

reviewed. In 2011, Rao et al. [25] first developed the concept

of TLBO and applied in the field of mechanical design
problems. More elaborative descriptions with the global

function optimization by the application of TLBO were

introduced by Rao et al. [26]. They tested the effectiveness of
the TLBO algorithm with the considerations of benchmark

functions. Again, Rao and Patel [27] described the TLBO

algorithmwith some improvements in the existing TLBO and
applied for unconstrained optimization problems. In 2012,

Rao and Patel [28] introduced the Elitist TLBO for constraint

optimization and shown some more improved results on
ETLBO over TLBO. For both constrained and unconstrained

multiobjective problems, Rao and Waghmare [29] have

compared the performance of TLBO with other optimization
techniques.Rao andMore [30] haveused the stochasticTLBO

method for design optimization of heat pipe and compared the

result of TLBOwith niched pareto genetic algorithm, grenade
explosion method and generalized external optimization.

They found the performance of TLBO better than other

methods for the optimization of heat pipes. Estimation of
energy consumption inTurkeywith the integration of artificial

neural network and TLBO algorithm has been achieved by

Uzlu et al. [31].Wang et al. [32] have developed the improved
version of the TLBO algorithm with the neighborhood search

with the applications of various benchmark functions and

artificial neural network. Basu [33] have used TLBO algo-
rithm to solve the multiarea economic dispatch problem in

power system with the consideration of different constraints.

A new self-tuned TLBO-optimized radial basis function
model has been developed by Yang et al. [34] to model the

electric vehicle batteries for better efficiency. A multiobjec-

tive decomposition-based TLBO algorithm to handle reactive
power has been proposed by Medina et al. [35]. Some more

diversified application areas of TLBO have been presented as

summary of the literature review in Table 1.
From Table 1, it is palpable that TLBO has been applied

in several diversified application areas including the fields

of power system, optimization problems, pattern recogni-
tion, load frequency control, energy systems, engineering
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designs and machine, but the algorithm has fewer compe-

tent applications in the data mining field, specifically in
classification, clustering and forecasting-related areas.

Inspired by this, in this paper, an attempt has been made to

investigate the performance of TLBO with higher-order
neural network. Higher-order neural networks are quite

efficient than the traditional feed-forward or back-propa-

gation networks. The performance of the algorithm has
been analyzed by considering different real-life benchmark

datasets and compared with several other methods

integrated with HONN. Simulation results of the proposed

model divulge that ETLBO–JPSNN performs better than
others in terms of classification accuracy.

3 Basic preliminaries

In this section, some of the basic preliminaries such as
TLBO, ETLBO, Pi-sigma network and Jordan Pi-sigma

network have been discussed.

Table 1 Literature survey on TLBO algorithm

Reference Contribution Area of application Year

Nayak et al. [36] MOTLBO Optimal power flow 2012

Toğan [37] TLBO Engineering design 2012

Niknam [38] MOTLBO Economic dispatch 2012

Jadhav et al. [39] MTLBO Economic load dispatch 2012

Satapathy et al. [40] TLBO ANN 2012

Zou et al. [41] TLBO Multiobjective optimization 2013

Roy et al. [42] QOTLBO Hydro thermal scheduling 2013

Mandal and Roy [43] QOTLBO Power dispatch 2013

Garcı́a and Mena [44] MTLBO Distributed generation 2013

Rao and Kalyankar [45] TLBO Machining processes 2013

Roy [46] TLBO Scheduling problem 2013

Roy and Bhui [47] QOTLBO Load dispatch 2013

Singh et al. [48] TLBO Power system 2013

Wang et al. [49] TLBO Optimization 2013

Satapathy et al. [50] WTLBO Optimization 2013

Satapathy et al. [51] OTLBO Optimization 2013

Tuo et al. [52] HSTL Optimization 2013

Xia et al. [53] STLBO Sequence planning 2013

Savsani et al. [54] TLBO Robotics 2013

Wen-Jing et al. [55] TLBO Reliability 2013

Gonzalez-Alvarez et al. [56] MO-TLBO Bioinformatics 2013

Theja et al. [57] TLBO Power system 2013

Sultana and Roy [58] TLBO Optimal capacitor placement 2014

Abarghooee [59] Gradient-based modified TLBO with black hole Scheduling of thermal power systems 2014

Arya and Koshti [60] TLBO Load shedding 2014

Khalghani and Khoob [61] TLBO Power quality 2014

Niu et al. [62] STLBO Fuel and solar cell models 2014

Moghadam and Seifi [63] Fuzzy-TLBO Energy loss minimization 2014

Gonzalez-Alvarez et al. [64] MTLBO Biology 2014

Yammani et al. [65] MTLBO Power distribution 2014

Cheng [66] TLBO Temperature calculations 2014

Sahoo et al. [67] TLBO Pattern recognition 2014

Agrawal et al. [68] TLBO Pattern recognition 2014

Barisal [69] TLBO Load frequency control 2015

Ghasemi et al. [70] GBTLBO Power dispatch problem 2015

Chen et al. [71] ITLBO Optimization 2015

Sahu et al. [72] TLBO Power system 2015

Ghasemi et al. [73] ITLBO Power flow 2015

Chakravarthy et al. [74] TLBO Antenna 2015

Mummareddy and Satapathy [75] TLBO Clustering 2015
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3.1 Teaching–learning-based optimization (TLBO)

It is a new population-based metaheuristic inspired by the
teaching and learning process in a classroom environment.

The main basis of the algorithm relies on two ideas: (a) the

effects of teaching of a teacher upon a student, (b) knowl-
edge gained by the student through the interaction with his

or her friends. In this algorithm, a group of students are

considered as population, different offered subjects [27] are
the design parameters of the algorithm, results of the stu-

dent are the fitness values, and the teacher is the best

solution in the intact population. The algorithm has two
consequent phases such as teaching phase and learning

phase.

3.1.1 Phase-I (teaching)

The teaching phase simulates the behavior of the student
through the teacher. A teacher always tries to give his

best in the class to bring all the students up to his own

level of knowledge. But practically, it may not possible

due to the level of knowledge difference among the
students, which can be considered in terms of average,

good and best rank. So, for an overall calculation of

level of knowledge in the classroom, the mean can be
considered which is a random procedure and depends on

various external factors.

3.1.2 Phase-II (learning)

The learning phase simulates the behavior of the student

through the interaction or discussion of his knowledge

with other students or friends in the class. He may acquire
some knowledge on a concerned subject from his friends

by the method of discussion or interaction. A student can

also acquire some new knowledge from his friends if his
friends have more expertise than him on the concerned

subject.

The algorithm of the TLBO can be realized through the
following steps.

Teacher Phase
Step-1. Initialize the population of students X (candidate solutions) randomly.
Step-2. Calculate the mean of each student in the population (Xmean).
Step-3. Compute the fitness of each student in the population and find out the best solution (Xteacher)
Step-4. Generate new population by modifying the solutions in initial population based on best solution (teacher), 
mean of students in the population (mean) and teaching factor .
for i=1:1: no.s of weight-sets in the population X 

End for

Learner Phase
Step-5. Update population of student X by comparing fitness of students in old population X and new population 
Xnew .

for i=1:1: no.s of weight-sets in the population X
if (fitness of Xi(old) <  fitness of Xi (new) )

Xi= Xi(new)
Else

Xi= Xi(old)

endif
endfor

Step-6. Randomly select two weight-sets from population and improvise them.

Select ith and jth weight-sets and randomly from population.
If (fitness of < fitness of )

Else

Ifend

Step-7. Check for termination criteria. If reached stop. Else go to step-2.
Step-8. Exit
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During the teaching phase, the learning quality of the

students is being simulated through the teacher. The tea-
cher teaches the students and tries to increase the mean

result of the class. The population of students (X) is

selected randomly and the mean of the population is
(Xmean) for a particular subject. After computing the fitness

of each student in the population, the best solution is ter-

med as (Xteacher), who possess the highest knowledge. The
teacher may put his best effort for teaching, but the stu-

dents will acquire the knowledge depending on the quality
teaching and the level of students (average, good and best)

present in the class. By taking this fact into consideration,

the result of teaching quality of the teacher and mean result
of the students is represented as: rand 1ð Þ Xteacherð $
TF % XmeanÞ. The value of rand(1) lies in the range [0, 1].

TF is the teaching factor and is responsible for the modi-
fication of the mean value. The value of TF is described as

follows:

TF ¼ round 1þ rand 0; 1ð Þ 2$ 1ð Þð Þ:

3.2 Elitist teaching–learning-based optimization
(ETLBO)

The elitism concept in TLBO was first introduced by Rao
et al. [28], and they proposed the Elitist TLBO to solve the

constraint optimization problems. Later on, Rajasekhar

et al. [76] have introduced the elitism concept in a different
manner by integrating opposition-based optimization with

TLBO. However, the elitism term is very popular, as it is

being frequently used in several population-based evolu-
tionary algorithms. The concept of elitism is the modifi-

cation of the best solution by replacing the worst solution

during the iteration. As in the TLBO algorithm, mean value
of the learners is considered, so there may be a possibility

of duplicate values after the replacement of elite solution to

the worst one. During each generation of the TLBO algo-
rithm, the solutions are modified in both the phases (phase-

I and II) and the duplicate solutions are modified in random

fashion. Hence, for the Elitist TLBO, we have considered
twice of both the population size and no. of population plus

the no. of function evaluations required at duplicate value

elimination step, i.e., [{2 9 X 9 no. of genera-
tions} ? {No. of function evaluations needed for duplicate

value elimination}], where X is the size of the population.

3.3 Pi-sigma neural network (PSNN)

Shin and Ghosh [77] introduced Pi-sigma neural network
(PSNN), in which exponential increase in no. of weight

vectors and processing units are reduced. PSNNs are a

special type of feed-forward neural networks having an
input layer, a single hidden layer of summation units and

product units in the output layer. PSNN passes the output in

the form of nonlinear function as the product of summation
unit in the output layer [78]. By using fewer weight vectors

and processing units, these are capable of quick learning

which makes them more accurate and tractable than the
other networks [79]. The weights connected from the input

layer to hidden layer are tailored during the training, and

the weights connecting from hidden layer to output layer
are fixed to unity. Due to this reason, the complexity of the

hidden layer can be dramatically reduced by the number of
tunable weights, for which the model can be easily

implementable and accelerated [80, 81] (Fig. 1).

Let the input x = (x1, …, xj,…, xn)
T be the n-dimen-

sional input vectors, where additional Bj is the bias unit and

xj denotes the jth component of X. The weight vectors such

that wij = (wij1, wij2,…, wijn)
T, i = 1, 2, …, k are summed

at a layer of k summing units, where k is the corresponding

order of the network. The output at the hidden layer hj can

be computed by Eq. (1).

hj ¼ Bj þ
X

wjixi ð1Þ

where wij represents the weight from the input to summing

unit. Bj is the bias unit of the neural network. As the weight
in the hidden layer to output layer is fixed to 1, so the

output O can be computed by using Eq. (2).

O ¼ f
Yk

j¼1

hj

 !

ð2Þ

where f(!) is a suitable activation function. The order of the

PSNN can be computed by the exact number of processing

neurons in the hidden layer. The structure of the network
may be regularly expanded by adding one or more extra

summing units in the hidden layer without hampering the

structure of PSNN.

3.4 Jordan Pi-sigma neural network (JPSNN)

Instead of using the sum of product of the inputs, the

product of sum of input units having the linear summation

of a single hidden layer and the product of processing units
at output layer are used in PSNN. In 1986, Jordan intro-

duced the implementation of JPSNN [82], whose network

structure is similar to PSNN. Only it has an additional
recurrent link [83] from output layer to input layer. The

JPSNN network constitutes with three layers such as input

layer, output layer and the hidden layer with the hidden
units (Fig. 2).

The weight vectors x1ðtÞ; . . .; xkðtÞ are set at input layer

passing toward the hidden layer, and the weights at hidden
layer to output layer are set to 1. The tuned weight vectors
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are used to test the generalization of new data, and Z-1

indicates the operation in time delay.

Suppose at time t, xk (t) is set to the network as kth
external input. Considering ‘n’ number of external inputs,

let wij are the trainable weights, hk (t ? 1) is the summing

unit, O (t ? 1) indicates the output at time t ? 1, f(!)
indicates the activation function in the network and the

number of output is 1.

The overall output [84] at time t is O(t) and is computed
as in Eq. (3).

O tð Þ ¼
xkðtÞ if 1( k(N
1 if k ¼ nþ 1
OkðtÞ if k ¼ nþ 2

8
<

: ð3Þ

4 Proposed approach

In this section, the Elitist TLBO-based Jordan Pi-sigma
neural network has been proposed for classification of real

data. The ETLBO algorithm is used with a standard back-

propagation-based gradient descent learning for finding the
best weight-units for JPSNN network. The main objective

is to compare the performance of the proposed method with

other methods such as GA–JPSNN, PSO–JPSNN and
TLBO–JPSNN. Also, the performance of the PSNN

networks with TLBO and ETLBO has been compared with

other methods.

The proposed ETLBO–JPSNN starts with the initial
population of the learners Xð Þ, initialized with ‘n’ no. of

weight-units for JPSNN. The weight-units in the popula-

tion are randomly initialized between the values of -1 to 1,
and those will act like potential candidate weight-units of

JPSNN for classification of an individual dataset. The

individual weight-unit in X is computed as in Eq. (4), and
the set of weight-units is presented as in Eq. (5).

xi ¼ wi;1;wi;2; . . .;wm%a% 2%kþ1ð Þ
! "

ð4Þ

X ¼ x1; x2; . . .; xnð Þ ð5Þ

where the value of k is to be chosen and 2% k þ 1ð Þ is the
no. of functionally expanded values for a single value in

input data, ‘a’ is the number of attributes in a single input
pattern, ‘m’ is the number of patterns in the dataset and ‘n’

is the number of weight-units in the population. The aim is

to prune out optimal weight-set for the JPSNN network for
better classification accuracy. The individual weight-unit

Wi is set to JPSNN, and the network is trained with a
particular dataset. Depending on the obtained output of the

network and provided target output, the error of the net-

work is calculated. The working model of the proposed
work is illustrated in detailed flow diagram in Fig. 3. For

an individual dataset, the root-mean-square error (RMSE)

∑
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∑
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•
•
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•
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Fig. 1 Basic structure of a Pi-
sigma neural network
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for each weight-unit Wi is computed by using output
Eq. (6) of the network and given target output (Algorithm

2).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðOi $ ÔiÞ2

n

s

ð6Þ

The network uses supervised learning and has been

trained by using a standard back-propagation gradient

descent learning [85]. Before training the synaptic weights,
the learning method initializes by considering the small

random values. As JPSNN uses the adaptive training

method, the total error E can be calculated by Eq. (7).

EjðtÞ ¼ djðtÞ $ OjðtÞ ð7Þ

where dj(t) is the final desired output at time (t - 1). At

each of the time (t - 1), the output Oj(t) is computed by

using Eq. (8).

OjðtÞ ¼ f
Yk

L¼1

hLðtÞ

 !

ð8Þ

Here, hLðtÞ is calculated by using Eq. (9).

hLðtÞ ¼
Xn

n¼1

wLnxnðtÞ þ wLðnÞ þ wLðnþ1ÞOðt $ 1Þ ¼
Xnþ1

n¼1

wLnZnðt $ 1Þ

ð9Þ

where hLðtÞ is the activation of ‘L’ unit, ‘f’ is the Sigmoid

activation function between the bounded range of [0, 1].
For each of the nodes in the current layer, repeatedly the

overall output error is calculated by using Eq. (10).

Ek ¼ 1=mTR

XmTR

i¼1

Oi $ Zki ð10Þ

where zik is the output of kth node with respect to ith data

value and mTR is the training sets.

The change in the weight values and each time updation
of weight-units are calculated as in Eqs. (11) and (12),

respectively.

Dwj ¼ g
Ym

j 6¼1

hji

 !

xk ð11Þ

hji is the summing layer output and g is the learning rate.

wi ¼ wi þ Dwi ð12Þ

Fig. 2 Architecture of JPSNN

Neural Comput & Applic

123

Author's personal copy



To accelerate the convergence of errors, an extra term a
(momentum) is added and the weight-unit values are cal-

culated by Eq. (13).

wi ¼ wi þ aDwi ð13Þ

The accuracy of classification is computed as in Eq. (14)

Accuracy ¼

Pn
i¼1

Pm

j ¼ 1;
i ¼¼ j

cmi;j

Pn
i¼1

Pm
j¼1 cmi;j

% 100% ð14Þ

where cm is confusion matrix.

After evaluating the fitness values for each weight-unit
in the population, the units having maximum fitness values

are selected as Teacher (xteacher). Then, in the population,

the mean of the weight-sets (Xmean) is computed by cal-
culating the mean of all the weight-units, and among them,

the elitist solution is selected. After calculating the teach-

ing factor (TF), the next population Xnext is generated from
X, Xmean, xteacher and TF. Then, the weight-units in initial

population X are updated by comparing the fitness of
weight-units in X and Xnext. This process has continued till

the execution of maximum no. of iterations or significant

Fig. 3 Detailed working model
of the proposed ETLBO–
JPSNN
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increase in the fitness of weight-units in the population.

The complete flow of the components in the working

model of the proposed ETLBO–JPSNN is depicted in

Fig. 3.

Algorithm – 1 ETLBO-JPSNN Learning Model
INPUT: Dataset with target vector ‘t’ , initial population of weight-units ‘X’, Bias B.

OUTPUT: JPSNN with optimized weight-set ‘w’.

1. Initialize the population of learners as ‘n’ no. of weight-units .
X = { , , …, }, where each is a randomly initialized potential weight-unit of JPSNN network as = 
{ , , …, }.
2. Compute the mean of all the weight-units ( ) in the population X.
3. Find elitist solutions in the population.
4. Calculate the fitness of all the weight-units in ‘X’ by using algorithm-2 and select the weight-set having
maximum fitness as best weight-unit ( ).
5. Generate the next population by using weight-units in the old population X, and .

for i=1:1: no.s of weight-units in the population X 

endfor
6. By comparing the fitness of weight-unts in X and Xnext, Update the population of weight-units.

for i=1:1: nos of weight-units in the population X
if (X(i) < Xnext(i) )

X(i)= Xnext(i)
endif

endfor
7. Select randomly two weight-units in the population and improvise them.

for k =1:1: no.s of weight-units in the population 
Select ith and jth weight-sets and randomly from the population .
Calculate the fitness of by using algorithm-2 as Fi= Fitness-From-Training (x,w,t,B).
Calculate the fitness of by using algorithm-2 as Fj= Fitness-From-Training (x,w,t,B).
If (Fi< Fj )

Else

Ifend
Endfor

8. Substitute the worst solutions with elite solutions in the population.
9. Check for termination criteria: 

if (maximum no. of generation reached OR 95% of weight-units in the population are similar ) 
then goto step-10.

else goto step-2
endif

10. Exit

Algorithm – 2: Fitness From Training Procedure
1. FUNCTION F= Fitness-From-Training (x, w, t, B)
2. FOR i = 1 to n, n is the length of the dataset
3.       Compute the output at the hidden layer by using (9)
4.       Compute the output of the network by using (8).
5.       Calculate the error term by using eq. (7) and compute the fitness F(i)=1/RMSE.
6. END FOR
7.    Compute root mean square error (RMSE) by using eq. (6) from target value and output.
8.    The weight changes by using the BP-GDL algorithm can be computed by using (11).
9.    Update the weight by using eq. (12). 
10.  The weight value can be calculated after adding the momentum term by using eq. (13). 
11. IF the stopping criteria like training error or maximum no. of epochs are satisfied, then Stop.

ELSE repeat the step from 2 to 11.
12. END
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In Algorithm 1, TF is not a TLBO algorithmic parameter

and rather is a function todecide themean, so its value changes
(either 1 or 2) and is randomly decided by the expression

TF ¼ round 1þ rand 0; 1ð Þ 2$ 1ð Þð Þ with the chance in equal
probability. As both ‘rand and TF’ are not TLBO algorithmic-
specific parameters, so their values are not to be tuned as in

case of the mutation and crossover parameters in GA, the

value of the inertia weight in PSO, etc. Both ‘rand and TF’ are
generated randomly during the run of the program, and TLBO

does not require controlling any major parameters. This
property of TLBO makes it more popular than the other

evolutionary population-based algorithms.

5 Experimental setup

In this section, the simulation environments, dataset used

for the experiment and other experimental details have

been illustrated.

5.1 Simulation environment

The proposed approach has been designed to correctly

classify the data having large number of feature sets and

various class labels. A vast comparative analysis among all
the classifiers has been done in two phases. In the first

phase, both the TLBO and ETLBO have been applied to

only PSNN and are compared with GA and PSO based
methods. In the next phase, the same TLBO and ETLBO

have been applied to JPSNN and also been compared with

GA and PSO. The proposed ETLBO–JPSNN along with
TLBO–JPSNN, PSO–JPSNN, GA–JPSNN and ETLBO–

PSNN, TLBO–PSNN, PSO–PSNN, GA–PSNN methods

have been implemented by using MATLAB 9.0 on a sys-
tem with an Intel Core 2 Duo CPU T5800, 2 GHz pro-

cessor, 2 GB RAM and Microsoft Windows-2007 OS.

5.2 Parameter settings

The quality of each learner is represented through its cor-
responding fitness value with elite solutions. The lists of

parameters set for both JPSNN and ETLBO during the

experiment are given in Table 2.

5.3 Dataset information

The benchmark datasets (Table 3) used for classification

are originated from UCI machine learning repository [86]

and processed by KEEL software [87]. The first column in
the table shows the corresponding name of the datasets.

The other information such as number of attributes and

number of class labels have been indicated in the rest of
some columns. The detail descriptions about all these

dataset can be obtained at ‘http://archive.ics.uci.edu/ml/’

and ‘http://keel.es/’.

The brief description about the datasets used for the
experimental analysis is as follows:

Heart dataset This dataset is related to the human heart,
and its attributes are age, sex, chest pain type, resting

blood pressure, etc. It comprises of 256 patterns, 14 no.

of attributes and 2 class labels. It is of multivariate type
and has no missing values

Hepatitis dataset This dataset is used as the information

about the hepatitis patients. It has 155 patterns, 19 no. of
attributes and 2 no. of classes. It has no missing values

Pima dataset This dataset is a collection of females more
than 21 years old of Pima Indian Heritage. It consists of

768 patterns, 9 no. of attributes and 2 class labels. There

are no missing values for this dataset
Ecoli dataset This dataset is used to predict the

localization site of proteins by employing some mea-

sures about the cell such as cytoplasm and lipoprotein. It

Table 2 Parameter settings

JPSNN parameters ETLBO parameters

Initialization of weight vector
except output layer: values
between -1 and 1

TF = 1 or 2 (with equal
probability)

Initialization of weight vector
at output layer: 1

Population size = 40

Number of epochs: 500 Number of generations = 100

– Stopping criteria: maximum
number of iteration

Table 3 Dataset information

Dataset Number of
pattern

Number of
features/attributes

Number of
classes

Heart 256 14 02

Hepatitis 155 19 02

Pima 768 09 02

Ecoli 336 07 08

Vehicle 846 18 04

Balance 625 04 03

Hayesroth 160 05 03

New Thyroid 215 06 03

Wine 178 14 03

Dermatology 256 34 06

Parkinson 196 23 02

Ionosphere 351 33 02

Coil2000 9822 85 02

SpectF Heart 267 44 02

Spambase 4597 57 02
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has 336 patterns, 07 no. of attributes and 08 no. of

classes. It has no missing values

Vehicle dataset This dataset is used to classify a given
silhouette as one of four types of vehicle, using a set of

features extracted from the silhouette. It is based on the

vehicle classification having 846 patterns, 18 no. of
attributes and 4 no. of classes. It has no missing values

Balance dataset This dataset is used to model the

psychological experimental results. The balance scale
may shift to left or right or to be balanced. It is based on the

balance-scale measurements having 625 patterns, 4 no. of

attributes and 3 classes. It has no missing values
Hayesroth dataset This dataset consists of 5 numerically

valued attributes such as name, hobby and age. It has

160 no. of patterns, 5 no. of attributes and 3 class labels
having no missing values

New Thyroid dataset This dataset is used to classify the

patient’s thyroid condition as normal, hypo and hyper.
The dataset consists of 215 patterns,6 no. of attributes

and 3 class labels. It has no missing attributes

Wine dataset These are the resultant of the chemical
analysis wines grown in the same region in Italy. The

characteristics of the dataset are multivariate type and its

attributes are alcohol, malic acid, etc. It consists of 178
patterns, 14 no. of attributes and 3 no. of classes. It has

no missing values

Dermatology dataset This dataset is used to detect the
type of erythemato-squamous disease. It has 256

patterns, 34 no. of attributes and 02 no. of classes

Parkinson dataset This is used to distinguish the healthy
peoples from those who are affected with the Parkin-

son’s diseases. It has 196 patterns, 23 no. of attributes

and 02 no. of classes
Ionosphere dataset This dataset is used to test the good

or bad signals. It has 351 patterns, 33 no. of attributes

and 02 no. of classes
Coil2000 dataset This is a real-world dataset, which

contains information on customers of an insurance

company and was used in the CoIL 2000 Challenge. It

has 9822 patterns, 85 no. of attributes and 02 no. of

classes
SpectF Heart dataset This dataset is used to the

diagnosis of cardiac Single Proton Emission Computed

Tomography (SPECT) images. It has 267 patterns, 44
no. of attributes and 02 no. of classes. It has no missing

values

Spambase dataset It describes the information about
4597 e-mail messages. The task of this dataset is to

determine whether a given e-mail is spam (class 1) or not

(class 2), depending on its contents. It has 4597 patterns,
57 no. of attributes and 02 no. of classes

5.4 Cross-validation

The cross-validation [88] is a statistical technique, which is

used to estimate the generalized performance of the learned
model from the data. The comparison between the learning

algorithms are made by dividing dataset into two segments:

training set and testing set. In k-fold cross-validation
(Mosteller and Turkey [89]), the data are partitioned into

k equally or nearly equal-sized fragments on which training

and validation are performed in such a way that, in each
test, different fold of the data is used for training and

validation.
In this paper, all the datasets used for classification are

prepared for cross-validation by using five fold cross-val-

idation technique. The datasets have been prepared by
splitting into fivefold, out of which fourfold are used for

training and onefold is used for testing. For example

(Table 4), the ‘Hayesroth-5-1tra.dat’ and ‘Hayesroth-5-
1tst.dat’ data are a pair of datasets sample of Hayesroth

dataset which is used for training and testing phase for a

single run, respectively. As fivefold cross-validation is
employed, the Hayesroth dataset contains five such pair of

dataset sample for training and testing the algorithms. All

Table 4 Fivefold cross-validated Hayesroth dataset

Dataset Data files Number
of pattern

Task Number of
pattern in class-1

Number of
pattern in class-2

Number of
pattern in class-3

Hayesroth hayesroth-5-1trn.dat 128 Training 52 51 25

hayesroth-5-1tst.dat 32 Testing 13 13 06

hayesroth-5-2trn.dat 128 Training 52 51 25

hayesroth-5-2tst.dat 32 Testing 13 13 06

hayesroth-5-3trn.dat 128 Training 52 51 25

hayesroth-5-3tst.dat 32 Testing 13 13 06

hayesroth-5-4trn.dat 128 Training 52 51 25

hayesroth-5-4tst.dat 32 Testing 13 13 06

hayesroth-5-5trn.dat 128 Training 52 52 24

hayesroth-5-5tst.dat 32 Testing 13 12 07
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other datasets are prepared for fivefold cross-validation in

the same manner and collected from KEEL dataset
repository.

6 Result analysis and discussion

In this study, to investigate the efficiency of the pro-
posed algorithm, a rigorous performance comparison has

been made between the proposed method and other

methods. First, the comparison has been made for the Pi-
sigma network. With PSNN, four optimization tech-

niques such as ETLBO, TLBO, PSO and GA have been
applied to find out the improvements in the weight-set of

the network. Every time, the changes in the weight-sets

are measured and the process has been continued till
there are any significant changes in the weight-set, i.e.,

closer to the target value. Then, the same procedure has

been followed for Jordan pi-sigma network. The average
classification accuracy results of all the datasets are

indicated in Tables 5 and 6. In all the 11 cases, the

performance results of both ETLBO–PSNN and
ETLBO–JPSNN are quite promising. In some cases such

as Pima, Balance and Wine datasets, the training results

of TLBO–PSNN are a little better than the results of
ETLBO–PSNN. This is due to the evaluations of repe-

ated same elitist solutions after the calculations of mean
values in the population. In case of worst solutions in the

population, the elitist value can be replaced. But in the

case of repeated duplicate solutions, for each time, the
elitist value can be replaced with lesser chance of rep-

etition. So, in some cases of only TLBO, the best value

in the population may also be treated as the Elitist value
in the ETLBO. However, in most of the cases, ETLBO

Table 5 Performance
comparison between ETLBO–
PSNN, TLBO–PSNN and other
models

Dataset Average classification accuracy (%)

ETLBO–PSNN TLBO–PSNN PSO–PSNN GA–PSNN

Train Test Train Test Train Test Train Test

Heart 96.008 95.864 95.256 95.398 90.231 91.148 89.203 90.128

Hepatitis 93.635 93.828 93.324 93.637 82.021 82.018 80.071 79.058

Pima 96.312 96.463 96.365 96.338 91.273 91.315 90.244 89.382

Ecoli 95.238 95.009 94.834 94.768 91.003 91.018 90.365 90.333

Vehicle 98.725 98.776 96.368 96.277 91.607 91.552 90.333 90.398

Balance 98.907 98.623 98.935 98.942 95.206 95.094 94.129 93.795

Hayesroth 97.398 97.346 96.663 95.703 91.292 90.278 90.200 90.234

New Thyroid 98.016 98.272 97.098 97.137 94.365 94.320 94.310 94.096

Wine 96.139 96.743 96.274 96.200 94.449 94.317 91.324 92.236

Dermatology 98.625 98.473 98.205 98.213 95.604 95.263 95.827 95.318

Parkinson 97.676 97.438 96.467 96.306 94.362 94.824 91.769 92.383

The bold faced results are the obtained results of the proposed method

Table 6 Performance
comparison between ETLBO–
JPSNN, TLBO–JPSNN and
other models

Dataset Average classification accuracy (%)

ETLBO–JPSNN TLBO–JPSNN PSO–JPSNN GA–JPSNN

Train Test Train Test Train Test Train Test

Heart 96.679 96.368 95.763 95.438 92.349 92.304 90.581 90.312

Hepatitis 93.324 93.638 93.408 93.762 84.297 84.328 81.634 81.547

Pima 97.389 97.437 96.008 96.037 92.964 92.819 91.461 90.258

Ecoli 96.003 96.186 95.076 95.029 92.897 92.653 90.873 90.537

Vehicle 98.968 98.824 96.999 96.462 93.089 93.319 91.007 90.658

Balance 98.906 98.867 98.914 98.598 96.079 96.563 94.862 94.633

Hayesroth 98.067 98.637 96.333 96.295 92.005 92.293 90.769 90.258

New Thyroid 99.114 98.903 97.863 97.632 95.463 94.949 94.627 94.004

Wine 98.753 98.999 96.780 96.465 95.392 95.327 93.507 93.004

Dermatology 98.579 98.769 98.506 98.362 95.570 95.237 95.916 95.283

Parkinson 98.653 98.529 97.008 96.982 95.336 95.650 92.438 92.164

The bold faced results are the obtained results of the proposed method
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performs better than TLBO with the elitism property.

Some marginal better classification accuracies have been

obtained in case of larger population size datasets such
as Pima, Vehicle and Balance. For one instance, the

training and testing results of Pima dataset for TLBO–

JPSNN are 96.008 and 96.037, respectively. Compared
to that, the ETLBO–JPSNN performs with better clas-

sification accuracies such as 97.389 and 97.437. So,

ETLBO performs quite better than TLBO in case of

large population sizes. The performance of the proposed

ETLBO–JPSNN along with other approaches for Heart,
Ecoli, New Thyroid, Wine and Parkinson’s datasets have

been shown in terms of RMSE and number of epochs in

Figs. 4, 5, 6, 7 and 8. The simulation results in all the
cases demonstrate the superiority on the performance of

ETLBO–JPSNN as compared to other techniques.

Fig. 4 Performance of ETLBO–JPSNN (RMSE vs. number of epochs) on Heart dataset

Fig. 5 Performance of ETLBO–JPSNN (RMSE vs. number of epochs) on Ecoli dataset
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7 Comparison with other neural network
classifiers

In this section, performance comparisons of the proposed

method have been made with another higher-order neural
network such as functional link artificial neural network

(FLANN). FLANN [90, 91] is a class of higher-order

neural networks that makes use of higher combination of

its inputs. In FLANN, the dimension of input pattern
increases artificially through the functional expansion, and

then, the extended and transformed input data are used to

train the feed-forward network. During functional expan-
sion, various mathematical functions, such as sine, cosine

and log, are used to transform an original input pattern to

its extended version. The number of input terms during
functional expansion depends upon the number of

Fig. 6 Performance of ETLBO–JPSNN (RMSE vs. number of epochs) on New Thyroid dataset

Fig. 7 Performance of ETLBO–JPSNN (RMSE vs. number of epochs) on Wine dataset
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attributes of an input pattern. The functionally expanded

values for dataset x can be generated by using Eq. (15),

where xi jð Þ stands for jth attribute value of ith pattern and
‘x’ is a dataset in a form of matrix of order m 9 n. Here,

‘m’ is the no of pattern and ‘n’ is the no. of attribute of each

pattern.

u xi jð Þð Þ ¼ xi jð Þ; cosPxi jð Þ; sinPxi jð Þ; cos 2Pxi jð Þ;f
sin 2Pxi jð Þ; . . .; cos nPxi jð Þ; sin nPxi jð Þ ð15Þ

Here, 2n ? 1 number of functionally expanded values are
generated for an input attribute value xi jð Þ of a pattern xi.

So, (n 9 (2n ? 1)) number of expanded values are gen-

erated for a single input pattern xi. In Eq. (15), value of ‘i’
can be ranged from ‘1’ to ‘n’ and value of ‘j’ can be ranged

from ‘1’ to ‘m’, where ‘m’ and ‘n’ are number of input

patterns and no. of attribute values of each input pattern
except class label, respectively. Therefore, the complete set

of functionally expanded values for dataset x is represented

using Eq. (16).

u ¼ u x1 1ð Þð Þ;u x1 2ð Þð Þ; . . .;u x1 nð Þð Þf gT;
n

u x2 1ð Þð Þ;u x2 2ð Þð Þ; . . .;u x2 nð Þð Þf gT
:

. . . u xm 1ð Þð Þ;u xm 2ð Þð Þ; . . .;u xm nð Þð Þf gT
o ð16Þ

The weights of FLANN set randomly prior to the above
functionally expanded values ‘u’ are the input to FLANN

classifier. Total n 9 (2n ? 1) number of weights are set

for each individual pattern, as each input pattern is trans-
formed to n 9 (2n ? 1) number of functionally expanded

values. Random initialization of weight-set for each indi-

vidual pattern can be visualized as in Eq. (17).

Wi ¼ wi;1;wi;2; . . .;wi;2nþ1

$ %
; for i ¼ 1; 2; . . .; n ð17Þ

Here, wi is the randomly initialized weight vector for a
single input value. Hence, initialization of set of weight for

input patterns of dataset ‘x’ can be viewed as a weight

vector W ¼ W1;W2; . . .;Wmf gT, where Wi is the set of

weight for ith pattern in the dataset ‘x’. The dataset ‘x’ is
supplied to FLANN in terms of functionally expanded

values ‘u’ and the net output is obtained as follows. First,

value of S is calculated as S ¼ u )W ¼ s1; s2; . . .; smf g:
Then, the net output Y is computed as Y ¼ f Sð Þ ¼ f s1ð Þ;f
f s2ð Þ; . . .; f smð Þg ¼ fy1; y2; . . .; ymg ¼ tan h s1ð Þ; tan hf
s2ð Þ; . . .; tan h smð Þg. Here, tan h is used as activation

function and net output yi is for input pattern xi.Based on

net output yi and given target value ti, error of FLANN is
calculated and gradient descent learning (GDL) method is

adapted to adjust weight values of FLANN. The details of

design procedure of GDL-based FLANN may be found
from recently published related works [92–94].

Initially, the population of weight-sets X (population of

students) is initialized with ‘n’ no. of weight-sets for
FLANN. Each weight-set in the population X is a vector of

weights initialized randomly between -1 and 1, which are

the potential candidate weight-sets of FLANN model of a
particular dataset. Each weight-set xi is set to FLANN indi-

vidually, and the FLANN model is trained with a particular

dataset. The corresponding values of RMSE and fitness have
been computed as same to the PSNN and JPSNN networks.

Fig. 8 Performance of ETLBO–JPSNN (RMSE vs. number of epochs) on Parkinson dataset
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After evaluation of fitness values for eachweight-set inX, the

weight-set with maximum fitness is selected as Teacher
(xteacher). From the population of X, the mean of the weight-

sets (Xmean) is computed by calculating the mean of all the

weight-sets in X. After the calculation of teaching factor
(TF), the next population Xnext is generated from X, Xmean,

xteacher and TF. Then, the weight-sets in initial population X
are updated by comparing fitness of weight-sets in X and
Xnext. The resultant population of weight-sets X. goes

through improvisation steps in which two weight-sets are
randomly selected from the population X and best among

them are chosen as weight-set for next generation Xnext by

comparing their fitness, thereby giving more chances to
migrate better weight-sets for next generation. These pro-

cesses are continued until maximum iteration is reached or

increase in fitness of weight-sets in X is not significant.

7.1 Parameter setup

The following parameters have been set during the exper-

iment of TLBO–FLANN and ETLBO–FLANN.

FLANN parameters TLBO parameters

For FLANN, the learning
parameter ‘l’ is set to 0.13 in
gradient descent learning by
testing the models in the range
0–3

For functional expansion in
FLANN, the value of n is set to

For TLBO, we have set the
common algorithmic
parameters by testing the model
by considering the suggested
values (population size = 40;
number of generations = 100;

FLANN parameters TLBO parameters

5, thereby each value in the
input pattern is expanded to 11
number of functionally
expanded input values

The number of functionally input
value increases hugely if larger
value of n is selected and the
small value of n is unable to
handle nonlinear nature of real-
world datasets

stopping criteria = maximum
number of generation)

7.2 Experimental results

In this section, the performance of FLANN classifier in

contrast to the proposed ETLBO–JPSNN has been
examined in order to know the improvement in weight-

sets in the population as well as the classification accu-

racy obtained by these algorithms in various iterations.
Here, all the previously used datasets (Sect. 6) have been

tested by using TLBO–FLANN and ETLBO–FLANN.

Moreover, we have considered four more high-dimen-
sional datasets (Ionosphere, Coil2000, Spectf Heart and

Spambase) to prove the effectiveness of the proposed

method over the other neural network classifiers. Table 7
describes the comparison of average classification accu-

racies of all the considered datasets. From the table, it is

clear that the proposed ETLBO–JPSNN not only performs
better for all the first described 11 data sets, but also it

has better classification accuracies in case of next four

Table 7 Performance
comparison between ETLBO–
JPSNN with FLANN and other
classifiers

Dataset Average classification accuracy (%)

ETLBO–JPSNN TLBO–JPSNN ETLBO–FLANN TLBO–FLANN

Train Test Train Test Train Test Train Test

Heart 96.679 96.368 95.763 95.438 92.534 86.34 89.826 79.891

Hepatitis 93.324 93.638 93.408 93.762 86.538 81.292 82.577 76.29

Pima 97.389 97.437 96.008 96.037 86.294 84.33 81.0 80.794

Ecoli 96.003 96.186 95.076 95.029 94.294 91.373 92.212 84.236

Vehicle 98.968 98.824 96.999 96.462 94.841 91.529 94.075 90.342

Balance 98.906 98.867 98.914 98.598 94.522 90.843 92.362 88.613

Hayesroth 98.067 98.637 96.333 96.295 93.547 89.643 91.825 85.523

New Thyroid 99.114 98.903 97.863 97.632 95.329 86.541 94.413 79.26

Wine 98.753 98.999 96.780 96.465 97.99 95.848 97.915 95.622

Dermatology 98.579 98.769 98.506 98.362 97.661 95.24 97.138 94.55

Parkinson 98.653 98.529 97.008 96.982 93.576 92.290 93.488 92.244

Ionosphere 94.856 93.582 93.491 93.992 92.861 90.247 91.483 90.738

Coil2000 86.217 85.694 84.621 81.379 81.073 79.644 78.462 78.646

SpectF heart 84.348 83.988 81.457 80.431 78.647 78.254 76.249 75.892

Spambase 89.653 86.246 85.549 85.177 83.461 81.279 82.593 80.438

The bold faced results are the obtained results of the proposed method
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high-dimensional data sets. As compared to TLBO–
FLANN and ETLBO–FLANN, the proposed method

seems to produce good results in all the considered

datasets. The changes in the RMSE values in different
iterations observed in these high-dimensional datasets are

illustrated in Figs. 9, 10, 11 and 12. The figures clearly

demonstrate better results of the proposed method over
different FLANN classifiers. Moreover, the average clas-

sification accuracies shown in Table 7 have been com-

pared with the work presented in [95]. The authors in [95]
have considered five data sets and experimented with the

FLANN model which is optimized with differential evo-

lution algorithm. They found the classification accuracy
for Wine, Heart and Pima as 93.10, 86.57 and 79.20,

respectively. For these three datasets, the classification

accuracies of the proposed ETLBO–JPSNN are quite
better as compared to them.

8 Statistical analysis and performance measures

Statistical analysis tools are used to investigate the com-
parison among improved performance of a proposed

approach over any existing methods and help to analyze the

nature of data. The performance in the improvement of the
proposed algorithm (from existing if any) or a completely

new algorithm should be statistically significant either in

terms of classification accuracy, error measures or any
other criteria in classification problems. Various statistical

tests and their analytical measures along with different
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Fig. 9 Performance comparison of ETLBO–JPSNN with other HONN on Ionosphere dataset
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Fig. 10 Performance comparison of ETLBO–JPSNN with other HONN on Coil2000 dataset
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experimental validations have been reviewed by Damsar
[96]. We have considered the statistical tests such as

ANOVA, Friedman test, Tukey test, Dunnett test and post

hoc test to measure the statistical correctness of the pro-
posed algorithm with the other existing algorithms.

8.1 ANOVA

The main objective of one-way ANOVA (Fisher [97]) is to

test the null hypothesis and to estimate the variability in the
performance of the models. The sum variability is divided

into the variability among the classifiers, variability
between the datasets and the residual (error) variability by

ANOVA [98]. We can reject the null hypothesis and get

some difference among the classifiers, based on some
marginal better variability of the between classifier com-

pared with error variability. The test has been carried out

using one-way ANOVA in Duncan’s multiple test range
with 95% confidence interval, 0.05 significant level and

linear polynomial contrast, and the result is indicated in

Fig. 13, and the result of Tukey and Duncan tests is shown
in Fig. 14.
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Fig. 11 Performance comparison of ETLBO–JPSNN with other HONN on SpectF Heart dataset
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Fig. 12 Performance comparison of ETLBO–JPSNN with other HONN on Spambase dataset
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8.2 Tukey and Dunnett test

Post hoc test is used to reject the null hypothesis in
ANOVA. For the comparison of the performance of all

classifiers with each other, Tukey’s test (Tukey [99]) and

for comparisons of all classifiers with the proposed clas-
sifier, the Dunnett test (Dunnett [100]) have been used.

ETLBO–JPSNN acts like the control group and it is being

compared with all other groups such as TLBO–JPSNN,
PSO–JPSNN and GA–JPSNN. The results of post hoc

(Tukey test and Dunnett test) tests are illustrated in Fig. 15.

In Tukey test, by considering one group as the control
group remaining are compared against that group and this

process has continued for all the others. During the test, it

is found that the mean difference between the classifier
variability is larger than the error variability in all the

considered cases which may lead to the rejection of null
hypothesis. Hence, the resulting performance values of all

the statistical tests show that the ETLBO–JPSNN performs

better than the other models.

8.3 Friedman test

In this paper, to calculate the differences among multiple

test classifiers, Friedman test (Milton Friedman [101, 102])

has been used. Certain ranks has been assigned to each of
the classifier’s values in each rows, such that the best

performed algorithm will have the chance of getting

highest rank followed by others and the measured depen-
dent variable must be ordinal. For the similar cases, the

average ranks may be calculated by using Eq. (18) in each

of the columns.

Rj ¼ 1=N
X1

i

r ji ð18Þ

where r ji is the rank of the jth classifiers and N is the
number of datasets. Table 8 shows the assigned ranks

(shown in brackets) of each classifiers on different cross-

validated datasets. The average accuracy values
(train ? test) in Table 6 of all the 11 datasets have been

considered for ranking purpose in all the cases. Based on

the assigned rank values, the average values
R1 ¼ 1:18;R2 ¼ 2;R3 ¼ 2:81;R4 ¼ 4:09;R5 ¼ 4:90f g

have been calculated for all the five algorithms.

Let us consider the null hypothesis, ‘H: All the classi-
fiers are in same rank and hence they are equivalent,’ all

the algorithms are same and so that, the ranks will be equal.

Based on the ranks Rj of the classifiers, the Friedman

statistics X2
F is computed by using Eq. (19).

Fig. 13 ANOVA results with 95% confidence interval

Fig. 14 Results of Tukey and Duncan test
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X2
F ¼ 12N=m mþ 1ð Þ

X1

j

R2
j $

m mþ 1ð Þ2

4

" #

ð19Þ
where X2

F is the Friedman statistics and is distributed with

(m - 1) degree of freedom. The values of N and m are

considered as integer values. Iman and Davenport [103]

Fig. 15 Results of post hoc test and Dunnett test

Table 8 Assigned Friedman’s
rank to all the classifiers

Dataset Average classification accuracy [train ? test] (%)

ETLBO–JPSNN ETLBO–PSNN TLBO–JPSNN PSO–JPSNN GA–JPSNN

Heart 96.52 (1) 95.93 (2) 95.60 (3) 92.32 (4) 90.44 (5)

Hepatitis 93.48 (3) 93.73 (1) 93.58 (2) 84.31 (4) 81.59 (5)

Pima 97.41 (1) 96.38 (2) 96.02 (3) 92.89 (4) 90.85 (5)

Ecoli 96.09 (1) 95.12 (2) 95.05 (3) 92.77 (4) 90.70 (5)

Vehicle 98.89 (1) 98.75 (2) 96.73 (3) 93.20 (4) 90.83 (5)

Balance 98.88 (1) 98.76 (2) 98.75 (3) 96.32 (4) 94.74 (5)

Hayesroth 98.35 (1) 97.37 (2) 96.31 (3) 92.14 (4) 90.51 (5)

New Thyroid 99.00 (1) 98.14 (2) 97.74 (3) 95.20 (4) 94.31 (5)

Wine 98.87 (1) 96.44 (3) 96.62 (2) 95.35 (4) 93.25 (5)

Dermatology 98.67 (1) 98.54 (2) 98.43 (3) 95.40 (5) 95.59 (4)

Parkinson 98.59 (1) 97.55 (2) 96.99 (3) 95.49 (4) 92.30 (5)

Average 1.18 2 2.81 4.09 4.90

The bold faced results are the obtained results of the proposed method
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distributed the statistics with (m - 1), (m - 1) (N - 1)
degree of freedom as per F-distribution and developed a

better performed Friedman statistics shown in Eq. (20).

FF ¼ N $ 1ð ÞX2
F
&
N m$ 1ð Þ $ X2

F
ð20Þ

The value of N (no. of datasets) is 11 and X2
F is 36.68

under the (m - 1) degree of freedom. As per F-distribu-

tion, the FF is computed as 50.10 by placing the values of

X2
F, N, m in Eq. (18). The FF value is calculated with the

(m - 1), (m - 1) (N - 1) degree of freedom, i.e., (5 - 1),

(5 - 1) (11 - 1) degree of freedom, and the crucial value
can be obtained as 5.99 by appropriately selecting the value

of a as 0.01. As per the above calculations, the critical

value is less than the FF statics, so, the null hypothesis is
rejected. Hence, we can proceed for the post hoc analytical

test. The density plot with the F value and critical value is

shown in Fig. 16.
After rejection of the null hypothesis, the post hoc test

has been carried out by using the Holm procedure (Garcia

et al. [104]; Luengo et al. [105]) to compute the perfor-
mance of each of the classifiers against the other classifiers

depending on the z value and p value. The z value is cal-

culated by using Eq. (21), and accordingly, the p value is
computed from the normal distribution table.

Z ¼
Ri $ Rj

! "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m mþ 1ð Þ=6N

q ð21Þ

where z indicates the z score value. Ri and Rj are the

average rank of ith and jth classifier, respectively. The
number of classifiers is m, and N is the number of datasets,

respectively. The classifiers ETLBO–PSNN, TLBO–

JPSNN, PSO–JPSNN and GA–JPSNN are compared with
ETLBO–JPSNN based on z value, p value and a= m$ ið Þ,
where ‘i’ is the classifier’s number as described in Table 9.

By using the Holm test, when we compare the value of

pi with a= m$ ið Þ, it is observed that, the null hypothesis

can be rejected as pi is less than a= m$ ið Þ in all the three
cases. Hence, it is proved that all the null hypotheses are

rejected. On the other side, Hochberg procedure works

with the same procedure, but the largest p value will be
compared with a and the next p value with a=2 and so

on. In this case also, the null hypothesis is rejected.

Hence, the proposed classifier ‘ETLBO–JPSNN’ is sta-
tistically significant and performs quite well on cross-

validated datasets and outperforms the other explained

classifiers.

9 Conclusion and future directions

All the optimization techniques have their own objective

function strategy for efficiently optimizing the functions or
variables. Basically, they depend on tuning or adjustments

of the algorithmic parameters, and accordingly, their per-

formance can be measured. Teaching–learning-based
optimization is quite new and effective for solving real-

world optimization problems. The key feature of this

algorithm is that, it need not depend on any strict con-
trolling parameters. In this paper, an efficient elitist TLBO

with higher-order Jordan Pi-sigma neural network has been

proposed for solving the classification problems in data
mining. In the beginning, first the algorithm has been

applied to only Pi-sigma neural network along with its

earlier version of TLBO algorithm. In the next phase, both
TLBO and ETLBO have been applied with JPSNN to show

the classification efficiency with a less error rate than the

other models. As indicated in the result table, the proposed
method is able to classify the nonlinear data with a better

classification accuracy as compared to TLBO, PSO and

GA. However, the results of both TLBO–JPSNN and

Table 9 Result of Holm and Hochberg procedure

i Classifiers z values p values a= m$ ið Þ

1 ETLBO–JPSNN: GA–JPSNN 5.55 1.432362e-8 0.0025

2 ETLBO–JPSNN: PSO–JPSNN 4.34 0.000007 0.0033

3 ETLBO–JPSNN: TLBO–JPSNN 2.43 0.007549 0.005

4 ETLBO–JPSNN: ETLBO–PSNN 1.22 0.111232 0.01

The bold faced results are the obtained results of the proposed method

Fig. 16 Density plot
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ETLBO–JPSNN are quite closer. But in maximum cases

(especially in the datasets having large population size like
Pima, Vehicle, Balance), we have achieved better results

with ETLBO. After a rigorous experimental analysis and

statistical analysis, it is found that the proposed ETLBO–
JPSNN model is steady, effective, valid and quite

promising for future research in other application domains.

In the near future, the performance of ETLBO will be
tested in some other applications of data mining such as

clustering and prediction. However, a deep focus will be
made on other improved version of TLBO, such as OL-

TLBO (opposition learning-based TLBO) in various data

mining applications.
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