
Performance Tuning of Evolutionary Algorithms Using Particle Sub Swarms

Crina Grosan
Department of Computer Science

Faculty of Mathematics and Computer Science
Babes-Bolyai University, Kogalniceanu 1, Cluj-Napoca 3400, Romania

cgrosan@cs.ubbcluj.ro

Ajith Abraham
School of Computer Science and Engineering
Chung-Ang University, Seoul 156-756, Korea

ajith.abraham@ieee.org

Monica Nicoara
Department of Computer Science

Faculty of Mathematics and Computer Science
Babes-Bolyai University, Kogalniceanu 1, Cluj-Napoca 3400, Romania

monica.nicoara@gmail.com

Abstract

Particle Swarm Optimization (PSO) technique proved
its ability to deal with very complicated optimization and
search problems. This paper proposes a new particle swarm
variant which deals with sub-populations. This algorithm
is applied for solving the well known class of mathematical
problems: geometrical place problems (also known as lo-
cus problems). Finding the geometrical place can be some-
times a hard task and in almost all situations the geometri-
cal place consists in more than one single point. The per-
formance of the sub-swarm based PSO method is compared
with Evolutionary Algorithms. The main advantage of the
PSO technique is its speed of convergence. Also, we propose
a hybrid algorithm by combining PSO and EA. This combi-
nation is able to detect the geometrical place very fast for
difficult problems for which EA’s need more time and PSO
technique even with sub-populations could not find the geo-
metrical place.

1 Introduction

Evolutionary Algorithms (EA) use a population of po-
tential solutions (points) of the search space. These so-
lutions (initially random generated) are evolved using dif-
ferent specific operators which are inspired from biology.

Through cooperation and competition among the potential
solutions, these techniques often can find optima quickly
when applied to complex optimization problems.

A relatively new evolutionary paradigm, called Particle
Swarm Optimization (PSO) had been discovered through
simplified social model simulation (is motivated from the
simulation of social behavior). There are some similarities
between PSO and Evolutionary Algorithms ([1]):

• both techniques use a population (which is called
swarmin PSO case) of solutions from the search space
which are initially random generated;

• solutions belonging to the same population interact
with each other during the search process;

• solutions are evolved (their quality is improved) using
techniques inspired from the real world (swarm behav-
ior in the case of Particle Swarm technique and ideas
from human genetics in the case of Evolutionary Al-
gorithms).

In what follows, we illustrate both techniques for solving
the geometrical place problems. It is well known that in the
case of these problems a set of points which accomplish a
given condition (or a set of conditions) is searched. In many
situations, the searched geometrical place consists in more
than one point (solution). PSO and EA are fit for this prob-
lem, mainly due to their ability to deal with a population of
solutions in the same time.

We propose a new Particle Swarm technique which is
based on the basic PSO algorithm proposed by Eberhart and
Kenedy in 1995. Some related work of the existing PSO
variants can be found in [5], [6], [7].

The main scope of our paper is to perform a compari-
son between these two techniques and to exploit the weak-
nesses/strengths of each of them. Finally, taking into ac-
count the results, we propose a hybrid algorithm combining
PSO and EA which seems to perform better in complicated
situations than each of these techniques when considered
separately.

The paper is structured as follows: Section 2 presents
some general notions about the locus problems. Section
3 presents PSO technique. Section 4 briefly describes the
new proposed sub-swarm PSO technique. The hybrid EA
and PSO approach is described in Section 5. In Section 6
some experiments considering different test problems are
performed. A set of conclusions and remarks are presented
towards the end.

2 Geometrical place problem

Thegeometrical place(or locus) can be defined as the set
of the points which have the same (or a common) property.
By following a traditional mathematical rule, the geometri-
cal place problems are solved in two steps:

• First, we are trying to determine (using intuition) this
set

• Second, we have to prove that this set is the geometri-
cal place we are looking for.

Example:
An ellipse is a curve that has the locus (or geometrical

place) of all points in the plane, the sum of whose distances
r1 andr2 from two fixed pointsF1 andF2 (the foci) sepa-
rated by a distance equal to 2c is a given positive constant
(Figure 1). The pointsM1,M2, M3 in Figure 1 are points
from the geometrical place.

3 Particle Swarm Optimization

Like other evolutionary computation techniques, PSO is
a population-based search algorithm and is initialized with
a population of random solutions, called particles ([5]).

Unlike in the other evolutionary computation techniques,
each particle in PSO is also associated with a velocity. Par-
ticles fly through the search space with velocities which are
dynamically adjusted according to their historical behav-
iors. Therefore, the particles have the tendency to fly to-
wards the better and better search area over the course of
search process.

Figure 1. Example of an ellipse locus

The PSO was first designed to simulate birds seeking
food which is defined as a ’cornfield vector’ [6]. As-
sume the following scenario: a group of birds are randomly
searching food in an area. There is only one piece of food in
the area being searched. The birds do not know where the
food is. But they know how far the food is and their peers’
positions. So what’s the best strategy to find the food? An
effective strategy is to follow the bird which is nearest to the
food.

PSO learns from the scenario and uses it to solve op-
timization problems. In PSO, each single solution is like a
’bird’ in the search space, which is called ’particle’. All par-
ticles have fitness values which are evaluated by the fitness
function to be optimized, and have velocities which direct
the flying of the particles.

PSO is initialized with a group of random particles (so-
lutions) and then searches for optima by updating each gen-
eration.

Each individual is treated as a volume-less particle (a
point) in the D-dimensional search space. Theith particle
is represented asXi = (xi1, xi2,. . . , xiD).

At each generation, each particle is updated by following
two ’best’ values.

The first one is the best previous location (the position
giving the best fitness value) a particle has achieved so far.
This value is calledpBest. The pBestof the ithparticle is
represented asPi = (pi1, pi2, . . . , piD).

At each iteration, theP vector of the particle with the
best fitness in the neighborhood, designatedlor g, and theP
vector of the current particle are combined to adjust the ve-
locity along each dimension, and that velocity is then used
to compute a new position for the particle. The portion of
the adjustment to the velocity influenced by the individual’s
previous best position (P) is considered thecognitioncom-
ponent, and the portion influenced by the best in the neigh-
borhood is thesocialcomponent.

2

With the addition of the inertia factor,ω, by Shi and
Eberhart [8] (brought in for balancing the global and the
local search), these formulas are:

vid = ω ∗vid +ηx ∗rand()∗ (pid−xid)+η2 ∗Rand()∗
(pgd − xid) (a)

xid = xid + vid (b)
where rand() and Rand() are two random numbers inde-

pendently generated in the range [0,1] andη1 andη2 are
two learning factors which control the influence of the so-
cial and cognitive components.

In equation (a) if the sum on the right side exceeds a con-
stant value, then the velocity on that dimension is assigned
to be±Vmax. Thus, particles’ velocities are clamped to the
range[−Vmax, Vmax]which serves as a constraint to control
the global exploration ability of particle swarm. Thus, is re-
duced the likelihood of particles leaving the search space).
Note that this not restrict the values ofXi to the range
[−Vmax, Vmax]; it only limits the maximum distance that
a particle will move during one iteration.

4 Independent Neighborhoods Particle
Swarm Optimization

The proposed PSO algorithm is similar to the classical
one which uses neighborhoods but still there are some dif-
ferences which are described below.

We consider the PSO algorithm with neighborhoods, but
not overlapping ones as usual. Thus, the particles in the
swarm ’fly’ in independent sub-swarms. It is just like divid-
ing the swarm into multiple independent ’neighborhoods’.
The dimension of each neighborhood (sub-swarms) is the
same for all considered sub-swarms.

The reason for not choosing overlapping neighborhoods
is that in the case of the studied problem (solving geomet-
rical place problems) the solution consists of a set of points
and not a single point only. Instead of searching for one sin-
gle point as the solution it is need of searching for a set of
points having the same property but independent one from
another.

In the classical PSO, each solution will follow the best
solution in the swarm or the best solution located in its
neighborhood. This means, finally all solutions will con-
verge to the same point (which is given by the position of
the best particle in the swarm). But for the geometrical
place problem we need to find a set of different solutions.
By considering different sub-swarms, the number of solu-
tions which can be obtained at the end of the search process
might be at most equal to the number of sub-swarms (this
in case each sub-swarm will converge to a different point).
Taking into account all these considerations, we will con-
sider small sub-swarms (having usually few particles - 4 or
5) so that we have chances to obtain, finally, a greater num-
ber of different points (which is ideal for geometrical place

problems).
The algorithm proposed is called Independent Neigh-

borhoods Particle Swarm Optimization (INPSO). The main
steps of the INPSO algorithm are described below:

INPSO algorithm

while iteration<= max iterationsdo
{ for each particlep do
Calculate fitness value
if the fitness value is better than the its best fitness value

in historythen
Updatepbest
if the fitness value attained a minimum criteria then
Stop particlep in the currentpbestlocation
for each particlep do
Identify the particle in the neighborhood with the best

fitness value so far as thelbest
Assign its index to the variablel
If particlep is not stopped then
Calculate particle velocity according equation (a)
Update particle position according equation (b)
}
When a particle finds a feasible solution (its fitness value

attains minimum criteria) it is obvious there is no need to
continue “flying” and thus the particle can stop at thatpBest
location. But the particle will continue to share its experi-
ence with its still ’flying’ neighbors (particles belonging to
the same sub-swarm).

5 Hybrid PSO and EA approach

In [3], a simple Evolutionary Algorithm called Geo-
metrical Place Evolutionary Algorithm (GPEA) for dealing
with loci problems is proposed. Analyzing results obtained
for some test problems by INPSO and GPEA independently
considered we concluded that GPEA always converges to
the solution, but compared to INPSO it is time consuming.
INPSO approach converges faster when compared to GPEA
(less number of iterations). But, for some difficult prob-
lems we found that some sub-swarms of INPSO could not
converge (even if the number of generations is increased
drastically)([4]). Taking these into account, we propose a
hybrid approach between INPSO and GPEA. First, we will
exploit INPSO’s ability to converge very fast and then, we
will use GPEA’s advantage to always converge to the so-
lution. After 100 generations of INPSO approach we will
switch to GPEA (the solutions which failed earlier using
INPSO is expected to converge using additional iterations of
GPEA). GPEA chromosomes consist of the existing INPSO
particles, with their current location.

3

6 Experiment Results

We performed some numerical experiments by consider-
ing two geometrical place problems. GPEA uses real en-
coding of solutions. Mutation and convex crossover are
the genetic operators used. Parameters used by INPSO are
given in Table 1 and parameters used by GPEA are given in
Table 2.

Table 1. Parameters used in experiments by
INPSO

Parameter Value
Swarm size 500
sub-swarm size 4
ηx 1.49445
ηy 1.49445
Sub-swarm size 4
Vmax 0.1* Xmax

inertia weight [0.5+(Rnd/2.0)]

Bothηx andη2 are set to 1.49445 according to the work
by Clerc ([2]). The obvious reason is it will make the search
cover all surrounding regions which is centered at thepBest
andlBest.

A randomized inertia weight is used, namely it is set to
[0.5+(Rnd/2.0)], which is selected in the spirit of Clerc’s
constriction factor.

Vmax is set to 0.1*Xmax. The value ofVmaxis usually
chosen to bek*Xmax, with 0.1≤ k≤1.0.

Population size is the same for both algorithms: 500 in-
dividuals and particles respectively.

Table 2. Parameters used in experiments by
GPEA

Parameter Value
Population size 500
Sigma 1
Crossover probability 0.5
Mutation probability 0.9

6.1 Experiment 1

Geometrical place of the pointsM for which the fraction
to two given pointsA andB is constant and equal tok, k 6=
1. Geometrical place consists of a circle (having different
size for different values ofk). The problem is known as
”Apollonius’s circle” . We will analyze the case in whichk
is = 2.

Results obtained by INPSO, GPEA and the hybrid al-
gorithms are depicted in Figure 2. Figure 2 (left) refers
to INPSO, Figure 2 (middle) refers to GPEA and Figure
2 (right) to the hybrid INPSO - GPEA approach.N denotes
the number of generations.

As we can see from Figure 2(right), INPSO particles
converged (almost all of them) in 100 generations. Finally,
after 200 generations all particles converged while GPEA
needs 1500 generations for all the individuals to converge.
For the hybrid INPSO-GPEA (first INPSO for 100 itera-
tions and thereafter GPEA) approach, all the particles (in-
dividuals) converged after 170 generations. Number of par-
ticles that did not converge in 100 generations by applying
INPSO is 5 (from a population of 500 individuals). If the
swarm size is 100 particles, two of them will not converge
in 100 generations. From a swarm of 200 individuals, 4
particles will fail to find the geometrical place. Same num-
ber of particles (4) will not converge from a swarm of 300
particles and 8 from a swarm of 400 particles respectively.
We use a greater number of particles so that the geometrical
place could be clearly visualized.

6.2 Experiment 2

Geometrical place of the pointsM for which the sum of
the distances to two fixed points representing the centers of
two circles having the raysR1 andR2 respectively is equal
to the product of the rays (R1 ∗R2).

The geometrical place is an ellipse having the foci cen-
ters of the two circles and consisting on those points for
which the sum of distances to the foci is equal toR1 ∗R2.

Depending on the circles position, the shape of the el-
lipse is different. Two situations are analyzed. When the
circles centers are same, then the geometrical place is a cir-
cle itself (see Figure 3).

Figure 3. Geometrical place when circle’s
centers are identical

4

Figure 2. Apollonius’s circle: INPSO (left), GPEA (middle), Hybrid INPSO-GPEA (right)

5

Case 1.
In this situation we consider the circles as having the

same value corresponding to theOx axis.
Results obtained by INPSO, GPEA and the hybrid al-

gorithms are depicted in Figure 4. Figure 4 (left) refers
to INPSO, Figure 4 (middle) refers to GPEA and Figure
4 (right) to the hybrid INPSO - GPEA approach.

As we can see from Figure 4 (right), INPSO particles
converged (almost all of them) in 200 generations. Finally,
after 300 generations all particles converged while GPEA
needs 900 generations for all individuals to converge. For
the hybrid INPSO-GPEA (first INPSO for 100 iterations
and thereafter GPEA) approach, all the particles (individ-
uals) converged after 250 generations. Number of particles
that did not converge in 100 generations by applying INPSO
is 7 (from the entire population of 500 particles). If the
swarm size is 100 particles, then one particle will not con-
verge in 100 generations. From a swarm of 200 individuals,
4 particles will fail to find the geometrical place. The num-
ber of particles which will not converge from a swarm of
300 particles is 7 and 4 for 400 particles respectively.
Case 2.

In this case we consider circles as having centers situated
on different levels.

Results obtained by INPSO, GPEA and the hybrid al-
gorithms are depicted in Figure 5. Figure 5 (right) refers
to INPSO, Figure 5 (middle) refers to GPEA and Figure 5
(right) to the hybrid INPSO - GPEA approach. We denoted
by N the number of generations.

As depicted in Figure 5 (right) INPSO converged much
faster when compared to GPEA. In about 100 generations
almost all particles converged. After 200 generations all
particles converged while GPEA required about 800 gener-
ations for all individuals to converge. The hybrid INPSO-
GPEA approach converged in a similar way as INPSO (in
170 generations). Number of particles that did not converge
within 100 generations by applying INPSO is 9 (out from
a population of 500 particles). If swarm size is 100 parti-
cles, then all of them converged in 100 generations. Same
situation for a swarm of 200 particles. From a swarm of
300 individuals, only a single particle failed in finding the
geometrical place. The number of particles that will not
converge is 8 for a swarm of 300 particles and 6 for 400
particles respectively.

7 Conclusions

In this paper a new variant of PSO is proposed. The al-
gorithm (called Independent Neighborhood Particle Swarm
Optimization (INPSO)) seems to work well for the consid-
ered geometrical place problems (and, generally, with prob-
lems for which the searched solution consists in more than
one point). INPSO uses independent sub-swarms which

evolves independently of the entire population. The PSO
rules are applied for each sub-swarm.

Some numerical experiments are performed. INPSO
is compared with classical Evolutionary Algorithms (EA).
INPSO is very fast compared to EA. But, for difficult prob-
lems, there can be some particles (a sub-swarm for instance)
which will never converge to the required solution. Taking
into account of these problems, INPSO and EA were hy-
bridized. PSO is very fast and EA’s always converges to the
solution. First, we applied INPSO and after a given num-
ber of generations (in our case after 100 generations) we
applied EA. The combination obtains the solution very fast
and all individuals converged to the geometrical place.

References

[1] Angeline, P. Evolutionary Optimization versus Par-
ticle Swarm Optimization: Philosophy and Perfor-
mance Difference, The 7th Annual Conference on
Evolutionary Programming, San Diego,USA, 1998.

[2] Clerc, M. The swarm and the queen: towards a de-
terministic and adaptive particle swarm optimization.
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 1999), pp. 1951-1957, 1999.

[3] Grosan C., Solving geometrical place problems by
using Evolutionary Algorithms. World Computer
Congress, M. Kaaniche (Ed.), Toulouse, France, pp.
365-375, 2004

[4] Crina Grosan, Ajith Abraham and Monica Nicoara,
Search Optimization Using Hybrid Particle Sub-
Swarms and Evolutionary Algorithms, International
Journal of Simulation Systems, Science & Technol-
ogy, UK, Volume 6, Nos. 10 and 11, pp. 60-79, 2005.

[5] Hu, X., Shi Y., and Eberhart, R.C. Recent Advences
in Particle Swarm, Congress on evolutionary Compu-
tation, Portland, Oregon, June 19-23, pp. 90-97, 2004

[6] Kennedy, J. and Eberhart, R. C. Particle swarm op-
timization.Proceedings of IEEE International Confer-
ence on Neural Networks (Perth, Australia), IEEE Ser-
vice Center, Piscataway, NJ, Vol.IV, pp.1942-1948,
1995.

[7] Shi, Y., and Eberhart, R. C. Empirical study of par-
ticle swarm optimization. Proceedings of the 1999
Congress on Evolutionary Computation, 1945-1950.
Piscataway, NJ: IEEE Service Center, 1999.

[8] Shi, Y. and Eberhart, R. C. A modified particle swarm
optimizer. Proceedings of the IEEE Congress on Evo-
lutionary Computation (CEC 1998), Piscataway, NJ.
pp. 69-73, 1998

6

Figure 4. Experiment 2 with Case 1: INPSO (left), GPEA (middle), Hybrid INPSO-GPEA (right)

7

Figure 5. Experiment 2 with Case 2: INPSO (left), GPEA (middle), Hybrid INPSO-GPEA (right)

8

