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Abstract In this paper, we propose novel methods to find

the best relevant feature subset using fuzzy rough set-based

attribute subset selection with biologically inspired algo-

rithm search such as ant colony and particle swarm optimi-

zation and the principles of an evolutionary process. We then

propose a hybrid fuzzy rough with K-nearest neighbor (K-

NN)-based classifier (FRNN) to classify the patterns in the

reduced datasets, obtained from the fuzzy rough bio-inspired

algorithm search. While exploring other possible hybrid

evolutionary processes, we then conducted experiments

considering (i) same feature selection algorithm with support

vector machine (SVM) and random forest (RF) classifier; (ii)

instance based selection using synthetic minority over-

sampling technique with fuzzy rough K-nearest neighbor (K-

NN), SVM and RF classifier. The proposed hybrid is sub-

sequently validated using real-life datasets obtained from the

University of California, Irvine machine learning repository.

Simulation results demonstrate that the proposed hybrid

produces good classification accuracy. Finally, parametric

and nonparametric statistical tests of significance are carried

out to observe consistency of the classifiers.

Keywords Evolutionary algorithms � Fuzzy rough �
Neural network � Bio-inspired algorithms � Classification �
Statistical test

1 Introduction

The large amount of data that are stored in databases

contains valuable hidden knowledge which helps the user

to improve the performance of decision-making process

[1]. Feature selection is considered to be an important task

inside machine learning with a focus on the most relevant

features used in representing the data in order to delete

those features considered as irrelevant making the knowl-

edge discovery from data as simple. Feature subset selec-

tion represents the problem of finding an optimal subset of

features of a dataset according to some criterion of selec-

tion, so that a classifier with the highest possible accuracy

can be generated by an inductive learning algorithm that is

run on data containing only the subset of features [2].

Based on whether a learning algorithm is included in the

training process or not, existing feature selection (FS)

approaches can be broadly classified into two categories:

filter and wrapper approaches. A filter FS approach is a

preprocessing procedure, and the search process is inde-

pendent of a learning algorithm. In wrapper approaches, a

learning algorithm is part of the evaluation function to

determine the goodness of the selected feature subset.

Wrappers can usually achieve better results than filters

while filters are more general and computationally less

expensive than wrappers [3]. A FS algorithm explores the

search space of different feature combinations to reduce the

number of features and simultaneously optimize the clas-

sification performance. In FS, the size of the search space

for n features is 2n. So in most situations, it is impractical

to conduct an exhaustive search [3]. Therefore, the search

strategy is the key part in FS. Different search techniques

have been applied to FS such as greedy search, but most of

them suffer from the problem of becoming stuck in local

optima or high computational cost [4, 5]. Therefore, an
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efficient global search technique is needed to develop a

good FS algorithm. Evolutionary computation techniques

are well known for their global search ability and have

been applied to the FS problems. These include particle

swarm optimization (PSO) [6, 7], genetic algorithms (GAs)

[8] and genetic programming (GP) [9]. Compared with

GAs and GP, PSO is easier to implement, has fewer

parameters, computationally less expensive, and can con-

verge more quickly [10]. Due to these advantages, two

versions of PSO, namely continuous PSO and binary PSO,

have been used for FS problems [6, 7, 11]. However, no

study has been conducted to investigate the difference of

using continuous PSO and binary PSO for FS. FS problems

have two goals, which are maximizing the classification

performance (or minimizing the classification error rate)

and minimizing the number of features. These two objec-

tives are usually conflicting, and there is a trade-off

between them. However, most of the existing FS approa-

ches, including PSO-based approaches, aim to maximize

the classification performance only. Therefore, it is sought

to use PSO to develop a multi-objective FS approach to

simultaneously minimizing the classification error rate and

minimizing the number of features selected. Ant colony

optimization is inspired by the behaviors of ants and has

many applications in discrete optimization problems. The

approach relies on a metaheuristic which is used to guide

other heuristics in order to obtain better solutions than

those that are generated by local optimization methods; in

ACO, a colony of artificial ants cooperates to look for good

solutions to discrete problems [12]. ACO is particularly

attractive for feature selection since there is no heuristic

information that can guide search to the optimal minimal

subset every time. On the other hand, if features are rep-

resented as a graph, ants can discover the best feature

combinations as they traverse the graph [13]. One of the

powerful approaches to dealing with the class imbalance

problem is synthetic minority over-sampling technique

(SMOTE). In this technique, SMOTE generates minority

class within the overlapping regions. SMOTE has been

widely used to solve imbalanced dataset problems in many

medical area, such as medical imaging intelligence [14]

and prostate cancer staging [15]. Rough set theory (RST)

was proposed by Pawlak [16], which is a valid mathematic

tool to handle imprecision, uncertainty and vagueness. As

an effective method to feature selection, rough sets can

preserve the meaning of the features. The essence of rough

set approach to feature selection is to find a subset of the

original features. Rough set theory provides a mathematical

tool that can be used to find out all possible feature subsets.

Unfortunately, the number of possible subsets is always

very large when N is large because there are 2N subsets for

N features. Hence, examining exhaustively all subsets of

features for selecting the optimal one is NP-hard [17].

However, most often the values of attributes are continu-

ous, but RST is applicable only on discretized data. In

addition, after discretization, it is not possible to judge the

extent to which the attribute value belongs to the corre-

sponding discrete levels. This is the source of information

loss, and it affects the classification accuracy negatively.

Therefore, it is essential to work with real-valued data for

combating the information loss, and this can be achieved

by combining fuzzy and rough set theory [18]. The success

of rough set theory is due in part to three aspects of the

theory. First, only the facts hidden in data are analyzed.

Second, no additional information about the data is

required for data analysis such as thresholds or expert

knowledge on a particular domain. Third, it finds a minimal

knowledge representation for data. As rough set theory

handles only one type of imperfection found in data, it is

complementary to other concepts for the purpose, such as

fuzzy set theory. The two fields may be considered anal-

ogous in the sense that both can tolerate inconsistency and

uncertainty—the difference being the type of uncertainty

and their approach to it; fuzzy sets are concerned with

vagueness, and rough sets are concerned with indiscern-

ibility. Many deep relationships have been established, and

therefore, most recent studies have made conclusions about

this complementary nature of the two methodologies,

especially in the context of granular computing. Therefore,

it is desirable to extend and hybridize the underlying

concepts to deal with additional aspects of data imperfec-

tion. Such developments offer a high degree of flexibility

and provide robust solutions and advanced tools for data

analysis [19–21]. The K-nearest neighbor (KNN) algorithm

is a well-known classification technique that assigns a test

object to the decision class most common among test

object. An extension of the KNN algorithm to fuzzy set

theory (FNN) was introduced in [22]. It allows partial

membership of an object to different classes and also takes

into account the relative importance (closeness) of each

neighbor w.r.t. the test instance. However, as Sarkar cor-

rectly argued in [23], the FNN algorithm has problems

dealing adequately with insufficient knowledge. In partic-

ular, when every training pattern is far removed from the

test object and, hence, there are no suitable neighbors, the

algorithm is still forced to make clear-cut predictions. This

is because the predicted membership degrees to the various

decision classes always need to sum up to 1. Currently, the

system based on neural network methods is one of the most

accurate of all prediction systems; however, it poses some

drawbacks [24]. Firstly, the black box nature of the neural

network makes it difficult to understand how the networks

predict the structure. Secondly, the systems based on neural

net perform well if the query has many possibilities. On the

other hand, the classification data mining using Nearest

Neighbor methods does not suffer from any of such
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drawbacks and is considered to be sub-optimal. Random

forest is an ensemble of unpruned classification or regres-

sion trees, induced from bootstrap samples of the training

data, using random feature selection in the tree induction

process. Prediction is made by aggregating (majority vote

for classification or averaging for regression) s the pre-

dictions of the ensemble [25]. Support vector machines

(SVM) are becoming increasingly popular in the machine

learning and computer vision communities. Training a

SVM requires the solution of a very large quadratic pro-

gramming (QP) optimization problem. In this paper, we

use a variant of SVM for fast training using sequential

minimal optimization (SMO) [26]. SMO breaks this large

QP problem into a series of smallest possible QP problems

avoiding large matrix computation. The amount of memory

required for SMO is linear in the training set size, which

allows SMO to handle very large training sets. SMO’s

computation time is dominated by SVM evaluation; hence,

SMO is fastest for linear SVMs and sparse datasets. SVM

ensembles can improve the limited classification perfor-

mance of the SVM.

The rest of the paper is organized as follows: Sect. 2

provides literature search, Sect. 3 introduces about various

evolutionary algorithms considered followed by the pro-

posed methodologies used in Sect. 4. A brief discussion on

the real-life dataset is provided in Sect. 5. Section 6 pre-

sents the experimental evaluations with discussions.

Finally, Sect. 7 concludes the paper with future directions

of research.

2 Related work

A hybrid adaptive particle swarm optimization aided

learnable Bayesian classifier is proposed [27]. The objec-

tive of the classifier is to solve some of the fundamental

problems associated with the pure naive Bayesian classifier

and its variants with a larger view toward maximization of

the classifier accuracy. In [28], the authors develop a PSO-

based multi-objective FS approach to selecting a set of

non-dominated feature subsets and achieving high classi-

fication performance and conclude to investigate the multi-

objective PSO-based FS approach to better exploring the

Pareto front of non-dominated solutions in FS problems as

a future work. In [29], the authors present the biological

motivation and some of the theoretical concepts of swarm

intelligence with an emphasis on particle swarm optimi-

zation and ant colony optimization algorithms. The basic

data mining terminologies are explained and linked with

some of the past and ongoing works using swarm intelli-

gence techniques. The paper [30] introduced the theoretical

foundations of swarm intelligence with a focus on the

implementation and illustration of particle swarm

optimization and ant colony optimization algorithms. They

provided the design and implementation methods for some

applications involving function optimization problems,

real-world applications and data mining. In [31], a bee

colony optimization algorithm hybrid with rough set theory

to find minimal reducts is proposed, which do not require

any random parameter assumption. All these methods are

analyzed using medical datasets. The authors argued that

their proposed method exhibits consistent and better per-

formance than the other methods with a saying that in

future, the same approach can be extended to categorical

attributes and also to handle missing values. In [32], the

authors summarize that the rough neural networks (RNNs)

are the neural networks based on rough set approaches

which is a hot research area in the artificial intelligence in

recent years, for the advantage of rough set to process

uncertainly question: attributes reduce by none information

losing then extract rule, and the neural networks have the

strongly fault tolerance, self-organization, massively par-

allel processing and self-adapted. So that, RNNs can pro-

cess the massively and uncertainly information, which is

widespread applied in our life. Feature selection based on

the fuzzy rough feature selection and tolerance-based fea-

ture selection on a number of benchmarks from the UCI

repository was used in [33]. The authors [34] proposed a

hybrid method by combining SMOTE and artificial

immune recognition system (AIRS) to handle the imbal-

anced data problem that are prominent in medical data.

They used the Wisconsin breast cancer (WBC) and Wis-

consin diagnostic breast cancer (WDBC) datasets to com-

pare the proposed method with other popular classifiers,

i.e., AIRS, CLONALG, C4.5 and BPNN. In [35], a rough

set attribute reduction algorithm that employs a search

method based on particle swarm optimization (PSO) is

proposed and compared with other rough set reduction

algorithms and finally concluded that reducts found by

their proposed algorithm are more efficient and can gen-

erate decision rules with better classification performance.

The rough set rule-based method can achieve higher clas-

sification accuracy than other intelligent analysis methods

such as neural networks, decision trees and a fuzzy rule

extraction algorithm based on fuzzy min–max neural net-

works (FRE-FMMNN). In [36], a hybrid algorithm for

instance and feature selection is discussed, where evolu-

tionary search in the instances’ space is combined with a

fuzzy rough set-based feature selection procedure. The

preliminary results, contrasted through nonparametric sta-

tistical tests, suggest that the proposal can improve greatly

the performance of the preprocessing techniques in isola-

tion. In [37], a granular neural network for identifying

salient features of data, based on the concepts of fuzzy set

and a newly defined fuzzy rough set, is proposed. The

effectiveness of the proposed network, in evaluating
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selected features, is demonstrated on several real-life

datasets. The results of FRGNN are found to be statistically

more significant than related methods in 28 instances of 40

instances, i.e., 70 % of instances, using the paired t test.

The paper [38] has presented an approach to deal with

system modeling and function approximation where the

authors conclude that due to unknown relations in the

condition attributes of some information systems,

employing a neural network could not be helpful for

approximating functionalities presented by such informa-

tion systems. In some cases, it is easy to extract features

and relations hided on data in an information system, but in

many cases it could be impossible when we have no idea

about what we are looking for. In [39], a modified feature

selection technique based on fuzzy rough set theory and

differential evolution is proposed. Here, the experimental

results are carried out using binary and multiclass datasets

taken from UCI machine learning repository.

3 Evolutionary algorithms

In this section, we will discuss on evolutionary algorithms

that are used for the study of the classification data mining

through out this paper.

3.1 Particle swarm optimization (PSO)

PSO is a population-based search algorithm and is ini-

tialized with a population of random solutions, called

particles [40]. Unlike in the other evolutionary computa-

tion techniques, each particle in PSO is also associated

with a velocity. Particles fly through the search space with

velocities which are dynamically adjusted according to

their historical behaviors. Therefore, the particles have the

tendency to fly toward the better and better search area

over the course of search process. The PSO was first

designed to simulate birds seeking food which is defined

as a ‘cornfield vector’ [41–45]. Assume the following

scenario: a group of birds are randomly searching food in

an area. There is only one piece of food in the area being

searched. The birds do not know where the food is. But

they know how far the food is and their peers’ positions.

So what is the best strategy to find the food? An effective

strategy is to follow the bird which is nearest to the food.

PSO learns from the scenario and uses it to solve the

optimization problems. In PSO, each single solution is

like a ‘bird’ in the search space, which is called ‘particle.’

All particles have fitness values which are evaluated by

the fitness function to be optimized and have velocities

which direct the flying of the particles (the particles fly

through the problem space by following the particles with

the best solutions so far). PSO is initialized with a group

of random particles (solutions) and then searches for

optima by updating each generation. The main PSO

algorithm as described by Pomeroy [46] is given below:

(Fig. 1).

3.2 Ant colonies optimization (ACO)

Ant colonies optimization (ACO) algorithms were intro-

duced around 1990 [47–49]. These algorithms were

inspired by the behavior of ant colonies. Ants are social

insects, being interested mainly in the colony survival

rather than individual survival. Of interest is ants’ ability to

find the shortest path from their nest to food. This idea was

the source of the proposed algorithms inspired from ants’

behavior. When searching for food, ants initially explore

the area surrounding their nest in a random manner. While

moving, ants leave a chemical pheromone trail on the

ground. Ants are guided by pheromone smell. Ants tend to

choose the paths marked by the strongest pheromone

concentration. When an ant finds a food source, it evaluates

the quantity and the quality of the food and carries some of

it back to the nest. During the return trip, the quantity of

pheromone that an ant leaves on the ground may depend on

the quantity and quality of the food. The pheromone trails

will guide other ants to the food source. The indirect

communication between the ants via pheromone trails

enables them to find shortest paths between their nest and

food sources. As given by Dorigo et al. [50], the main steps

of the ACO algorithm are given below:

1. pheromone trail initialization

2. solution construction using pheromone trail

Each ant constructs a complete solution to the problem

according to a probabilistic state transition rule. The state

transition rule depends mainly on the state of the phero-

mone [64].

3. pheromone trail update.

A global pheromone updating rule is applied in two

phases. First, an evaporation phase where a fraction of the

pheromone evaporates and then a reinforcement phase

where each ant deposits an amount of pheromone which is

proportional to the fitness of its solution [51]. This process

is iterated until a termination condition is reached.

3.3 Synthetic minority over-sampling technique

(SMOTE)

Synthetic minority over-sampling technique (SMOTE) [52]

consists of the following steps:

Step 1 Take majority vote between the feature vector

under consideration and its k-nearest neighbors for the
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nominal feature value. In the case of a tie, choose at

random.

Step 2 Assign that value to the new synthetic minority

class sample. Next step is to classify the data using FRS-

NN, SVM or random forest classifier.

3.4 Rough set theory (RS)

Rough set theory is a mathematical approach for handling

vagueness and uncertainty in data analysis. Objects may be

indiscernible due to the limited available information. A

rough set is characterized by a pair of precise concepts,

called lower and upper approximations, generated using

object indiscernibility. Here, the most important problems

are the reduction of attributes and the generation of deci-

sion rules. In rough set theory, inconsistencies are not

corrected or aggregated. Instead, the lower and upper

approximations of all decision concepts are computed and

rules are induced. The rules are categorized into certain and

approximate (possible) rules depending on the lower and

upper approximations, respectively. From the previous

work [53, 54], rough set theory has been proved as a suc-

cessful filter-based feature selection technique that per-

forms better in data reduction, and it can be applied to

many real-time problems. The three main aspects of the

rough set theory are as follows:

• Hidden facts in dataset are analyzed

• No additional information about the data is required

• Minimal knowledge is represented

In real-time applications, there are many cases where the

feature values are crisp and real-valued. Therefore, most

traditional feature selection algorithms fail to perform well.

To overcome this issue, an actual dataset is discretized

before constructing a new dataset using crisp values. Here,

the degrees of membership of the feature values to the

discretized values are not examined and it leads to an

inadequacy. So, it is clear that there is a prerequisite for

feature selection techniques that can reduce the real-valued

and crisp attributed datasets. Fuzzy theory and concept of

fuzzification are the feature selection techniques that have

emerged to provide an effective solution for real-valued

features. This technique allows the feature values that

belong to more than one class label with different degrees

of membership and models the vagueness in the dataset.

Again, it is exploited with fuzzy concepts, i.e., it enables an

uncertainty in reasoning the dataset. To overcome the

vagueness and indiscernibility in feature values, fuzzy and

rough set theory is encapsulated to remove uncertainty in

datasets. Fuzzy rough set theory [54] is an extended version

of the crisp rough set theory. It takes the degree of mem-

bership values within the range of [0, 1]. It gives higherFig. 1 Pseudo-code for PSO
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flexibility when compared to crisp rough sets where it deals

only with zero or full set membership. Fuzzy rough set is

described by two fuzzy sets. They are lower and upper

approximation. Fuzzy rough feature selection (FRFS) [55]

can be effectively used to reduce the discrete and real-

valued noisy attributes without any user information. In

addition, this technique applies to both classification and

regression problems that take the input value as continuous

or nominal values. Information that is required to partition

the fuzzy sets for feature vectors is automatically obtained

from the datasets. It can also be replaced by other searching

mechanisms such as swarm intelligence and ant colony

optimization. The fuzzy rough QUICKREDUCT algorithm

is provided in Fig. 2.

In FRFS, FR Quickreduct [56] is the basic algorithm

that has been developed to find a minimal subset of feature

vectors and it is represented in Fig. 1. It uses the fuzzy

rough dependency function c to select and add the feature

values to reduct candidate. If adding any feature value to

the reduct candidate fails to increase the degree of

dependency, then the FR Quickreduct algorithm stops with

the particular iteration. The FR Quickreduct algorithm

calculates a reduct candidate with all possible subsets of

feature values, but it lacks in comprehensiveness. It starts

the iteration with an empty set and adds a feature value one

by one after checking the constraint that fuzzy rough set

dependency should be increased or else it should produce a

maximum value for the actual dataset. Thus, the depen-

dency of each feature value is ascertained using FR quick

reduct algorithm, and the feasible candidate is chosen

(Fig. 2).

3.5 Fuzzy nearest neighbor classification (FRKNN)

The fuzzy K-nearest neighbor (FNN) algorithm [57] was

introduced to classify test objects based on their similarity

to a given number K of neighbors (among the training

objects), and these neighbors’ membership degrees to

(crisp or fuzzy) class labels. For the purposes of FNN, the

extent C(y) to which an unclassified object y belongs to a

class C is computed as:

C yð Þ ¼
X

x2N

R x; yð ÞC xð Þ ð1Þ

where N is the set of object y’s K-nearest neighbors, and

R(x, y) is the [0, 1]-valued similarity of x and y.

Assuming crisp classes, Fig. 3 shows an application of

the FNN algorithm that classifies a test object y to the class

with the highest resulting membership.

Initial attempts to combine the FNN algorithm with

concepts from fuzzy rough set theory were presented in

[58, 59]. In these papers, a fuzzy rough ownership function

is constructed that attempts to handle both ‘‘fuzzy uncer-

tainty’’ (caused by overlapping classes) and ‘‘rough

uncertainty’’ (caused by insufficient knowledge, i.e., attri-

butes, about the objects). The pseudo-code is given in

Fig. 4.

3.6 Support vector machine (SVM)

Sequential minimal optimization (SMO) is an algorithm for

solving the optimization problem which arises during the

training of support vector machines. It was invented by

John Platt in 1998 at Microsoft Research [60]. SMO is

Input: A set of instances
Output: A subset of features (B)

B ←{ } ;

repeat

T ←{B} ,best ← −1;

For each a∈( A
B) do

γ B∪{a} > best then

T ← B∪{a} ,
end
end
B ←T ;

best ←γ B∪{a};

until γ B ≥ Maxγ ;

Fig. 2 Fuzzy rough QUICKREDUCT algorithm

FNN (U, C, y, K).
U: the training data; C: the set of decision classes;
Y: the object to be classified; K: the number of nearest neighbors.
N ← getNN (y, K );

∀C ∈c

C ( y) = ∑ R ( x, y )C( x)
x∈N  

Output arg max (C ( y))
C∈c  

Fig. 3 The fuzzy KNN algorithm

FRNN(U, C, y)
U: the training data;
C: the set of decision classes;
y: the object to be classified

N ← get Nearest Neighbors(y,K)

τ ← 0,Class ←∅
∀C ∈c

if ((( R ↓ C) (y) + ( R ↑ C) (y))
Class ← C

2 ≥ τ )

τ ← (( R ↓ C) (y)+( R ↑ C) (y))
2

Output Class

Fig. 4 The fuzzy rough nearest neighbor algorithm – classification
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widely used for training support vector machines and is

implemented by the popular LIBSVM tool. The publication

of the SMO algorithm in 1998 has generated a lot of

excitement in the SVM community, as previously available

methods for SVM training were much more complex and

required expensive third-party QP solvers.

3.7 Random forest (RF)

Random forests [61] grows many classification trees. To

classify a new object from an input vector, put the input

vector down each of the trees in the forest. Each tree gives

a classification, and we say the tree ‘‘votes’’ for that class.

The forest chooses the classification having the most votes

(over all the trees in the forest).

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample

N cases at random—but with replacement, from the

original data. This sample will be the training set for

growing the tree.

2. If there are M input variables, a number m � M is

specified such that at each node, m variables are

selected at random out of the M and the best split on

these m is used to split the node. The value of m is held

constant during the forest growing.

3. Each tree is grown to the largest extent possible. There

is no pruning.

In the original paper on random forests, it was shown

that the forest error rate depends on two things:

• The correlation between any two trees in the forest.

Increasing the correlation increases the forest error rate.

• The strength of each individual tree in the forest. A tree

with a low error rate is a strong classifier. Increasing the

strength of the individual trees decreases the forest

error rate.

Reducing m reduces both the correlation and the

strength. Increasing it increases both. Somewhere in

between is an ‘‘optimal’’ range of m—usually quite wide.

Using the oob error rate (see below), a value of m in the

range can quickly be found. This is the only adjustable

parameter to which random forests is somewhat

sensitive.

Features of random forests

• It is unexcelled in accuracy among current algorithms.

• It runs efficiently on large databases.

• It can handle thousands of input variables without

variable deletion.

• It gives estimates of what variables are important in the

classification.

• It generates an internal unbiased estimate of the

generalization error as the forest building progresses.

• It has an effective method for estimating missing data

and maintains accuracy when a large proportion of the

data are missing.

• It has methods for balancing error in class population

unbalanced datasets.

• Generated forests can be saved for future use on other

data.

• Prototypes are computed that give information about

the relation between the variables and the classification.

• It computes proximities between pairs of cases that can

be used in clustering, locating outliers or (by scaling)

give interesting views of the data.

• The capabilities of the above can be extended to

unlabeled data, leading to unsupervised clustering, data

views and outlier detection.

• It offers an experimental method for detecting variable

interactions.

When the training set for the current tree is drawn by

sampling with replacement, about one-third of the cases is

left out of the sample. These oob (out-of-bag) data are used

to get a running unbiased estimate of the classification error

as trees are added to the forest. It is also used to get esti-

mates of variable importance. After each tree is built, all of

the data are run down the tree, and proximities are com-

puted for each pair of cases. If two cases occupy the same

terminal node, their proximity is increased by one. At the

end of the run, the proximities are normalized by dividing

by the number of trees. Proximities are used in replacing

missing data, locating outliers and producing illuminating

low-dimensional views of the data.

The out-of-bag (oob) error estimate

In random forests, there is no need for cross-validation

or a separate test set to get an unbiased estimate of the test

set error. It is estimated internally, during the run, as

follows:

• Each tree is constructed using a different bootstrap

sample from the original data. About one-third of the

cases is left out of the bootstrap sample and not used in

the construction of the kth tree.

• Put each case left out in the construction of the kth tree

down the kth tree to get a classification. In this way, a

test set classification is obtained for each case in about

one-third of the trees. At the end of the run, take j to be

the class that got most of the votes every time case n

was oob. The proportion of times that j is not equal to

the true class of n averaged over all cases is the oob

error estimate. This has proven to be unbiased in many

tests.
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3.8 Statistical test of significance

3.8.1 Sign test

Sign test [62] is used to test whether one random variable

in a pair tends to be larger than the other random variable

in the pair. Given n pairs of observations. Within each pair,

either a plus, tie or minus is assigned. The plus corresponds

to that one value is greater than the other, the minus cor-

responds to that one value is less than the other, and the tie

means that both equal to each other. The null hypothesis is

that the number of pluses and minuses are equal. If the null

hypothesis test is rejected, then one random variable tends

to be greater than the other.

3.8.2 Wilcoxon’s signed-rank test

This test is appropriate for matched pairs data, that is, for

testing the significance of the relationship between a

dichotomous variable and a continuous variable with

related samples. It does assume that the difference scores

are rankable, which is certain if the original data are

interval scale.

Sign test only makes use of information of whether a

value is greater, less than or equal to the other in a pair.

Wilcoxon’s signed-rank test [63, 64] calculates differences

of pairs. The absolute differences are ranked after dis-

carding pairs with the difference of zero. The ranks are

sorted in ascending order. When several pairs have abso-

lute differences that are equal to each other, each of these

several pairs is assigned as the average of ranks that would

have otherwise been assigned. The hypothesis is that the

differences have the mean of 0.

3.8.3 Student’s paired t test

A t test is used for testing the mean of one population

against a standard or comparing the means of two popu-

lations if you do not know the populations’ standard

deviation and when you have a limited sample (n \ 30). If

you know the populations’ standard deviation, you may use

a z test [65].

3.8.4 z test

A z test is used for testing the mean of a population

versus a standard, or comparing the means of two pop-

ulations, with large (n C 30) samples whether you know

the population standard deviation or not. It is also used

for testing the proportion of some characteristic versus a

standard proportion, or comparing the proportions of two

populations.

4 Description of real-life dataset used

We evaluated the proposed method using a few of the

benchmarks medical datasets from University of Califor-

nia, Irvine (UCI) repository [66].

4.1 Fisher’s Iris data

Fisher is perhaps the best-known database to be found in

the pattern recognition literature. The dataset contains 3

classes of 50 instances each, where each class refers to a

type of Iris plant. One class is linearly separable from the

other two; the latter are not linearly separable from each

other. The database contains the following attributes:

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class:

• Iris Setosa

• Iris Versicolour

• Iris Virginica

4.2 Pima Indians diabetes

The Pima Indians diabetes dataset is a well-known chal-

lenging pattern recognition problem from the UCI machine

learning repository [66]. The dataset has 768 cases, all with

the following numeric attributes:

1. Number of times pregnant

2. Plasma glucose concentration a 2 h in an oral glucose

tolerance test

3. Diastolic blood pressure (mmHg)

4. Triceps skin fold thickness (mm)

5. 2-h serum insulin (mu U/ml)

6. Body mass index [weight in kg/(height in m)2]

7. Diabetes pedigree function

8. Age (years)

9. Class variable (0 or 1)

The class variable (9) is treated as a boolean: 0 (false)

and 1 (true—tested positive for diabetes).

4.3 Tic-Tac-Toe

The popular children’s game Tic-Tac-Toe pits two players

against each other on a three-by-three grid, each player

attempting to place three marks—X or O—in a straight

line. If all nine spaces are filled with neither player creating

a line of three marks, the game results in a draw, or what is

commonly known as a Cat’s game. While the gameplay is
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straightforward enough, applying data mining techniques

to the possible game boards provides some interesting

information regarding the basic underlying strategies. Tic-

Tac-Toe benchmark dataset encodes the complete set of

possible board configurations at the end of Tic-Tac-Toe

games, where ‘‘x’’ is assumed to play first. The target

concept is ‘‘win of x’’ (i.e., true when ‘‘x’’ has one of 8

possible ways to create a ‘‘three-in-a-row’’). In Tic-Tac-

Toe dataset, there are total 958 instances/examples (626

positive examples and 332 negative examples), number of

classes: 2 (positive and negative) and the number of attri-

butes: 9 (each attribute corresponding to one Tic-Tac-Toe

square and has 3 attribute values x, o and b), which follows:

1. A1 = top-left-square: {x, o, b}

2. A2 = top-middle-square: {x, o, b}

3. A3 = top-right-square: {x, o, b}

4. A4 = middle-left-square: {x, o, b}

5. A5 = middle-middle-square: {x, o, b}

6. A6 = middle-right-square: {x, o, b}

7. A7 = bottom-left-square: {x, o, b}

8. A8 = bottom-middle-square: {x, o, b}

9. A9 = bottom-right-square: {x, o, b}

4.4 Heart-C

This dataset was obtained from Cleveland database.

Cleveland dataset concerns classification of person into

normal and abnormal person regarding heart diseases.

• Data representation:

Number of instances: 414.

Number of attributes: 13 and a class attribute

Class:

Class0: normal person.

Class1: first stroke

Class2: second stroke

Class3: end of life

• Attribute description:

(i) Attribute description range

Age: age in years continuous

Sex: (1 = male; 0 = female) 0, 1

Cp-value 1: typical angina 1, 2, 3, 4

-Value 2: atypical anginal

-Value 3: non-anginal pain

-Value 4: asymptotic

Trestbps: resting blood pressure (in mmHg)

continuous

Chol: serum cholesterol in mg/dl Continuous

fbs: (Fasting blood sugar .120 mg/dl) 0, 1

(1 = true; 0 = false)

restecg: electrocardiography results 0, 1, 2

-Value 0: normal

-Value 1: having ST-T wave abnormality (T

wave inversions and/or ST elevation or depres-

sion of [0.05 mV)

-Value 2: showing probable or definite left

Ventricular: hypertrophy by Estes’ criteria

Thalach: maximum heart rate achieved

continuous

Exang: exercise induced angina (1 = yes;

0 = no) 0, 1

Oldpeak: ST depression induced by exercise

relative to rest Continuous

Slope: the slope of the peak exercise

ST: segment 1, 2, 3

Value 1: up sloping

Value 2: flat

Value 3: down sloping

Ca: number of major vessels (0–3)

Colored by fluoroscopy continuous

Thal: normal, fixed defect, reversible defect 3,

6, 7

(ii) Linear data scaling

Here, each value is converted into the range

between 0 and 1 using the following formulae

D = Xmax - Xmin

Y = intercept C = (X - Xmin)/D
Slope = m = 1/Delta

So, we calculate Y for a given X as

Y = mX ? C.

4.5 Hepatitis dataset

The dataset contains 155 instances distributed between

two classes die with 32 instances and live with 123

instances. There are 19 features or attributes, 13 attri-

butes are binary while 6 attributes with 6–8 discrete

values. The goal of the dataset is to forecast the presence

or absence of hepatitis virus. Table 1 lists information

about the features.

4.6 Breast cancer-W dataset

The dataset breast cancer-Wisconsin currently contains 699

instances with 2 classes (malignant and benign), 9 integer-

valued attributes and the following Attribute Information

as given in Table 2.

These data contain 16 missing attribute values. There

are 16 instances in Groups 1–6 that contain a single
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missing (i.e., unavailable) attribute value, now denoted by

‘‘?’’. Class distribution: benign: 458 (65.5 %) and malig-

nant: 241 (34.5 %)

5 Proposed methodology

The proposed system design is diagrammatically presented

in Fig. 5. The data mining framework for the classifier is

viewed from the perspective of both the training/learning

phase and the test phase. The dataset is visualized and

preprocessed before applying any of the data mining

techniques The training phase then makes the learning

process complete by generating all possible rules for

classification after performing feature relevance followed

by classification. The test phase determines the accuracy of

the classifier when presented with a test data and by

viewing the returned class label.

Our experiments were conducted in two ways. First,

with a supervised attribute filter that can be used to select

attributes. It is very flexible and allows various search and

evaluation methods to be combined. The proposed bio-

inspired algorithm search such as ACO and PSO deter-

mines the search method while the evaluator determines

how attributes/attribute subsets are evaluated. Secondly,

with a supervised instance-based feature subset selection

method where a dataset is resample by applying SMOTE.

Here, class value is the index of the class value to which

SMOTE should be applied with a value of 0 to auto-detect

the non-empty minority class and the number of nearest

neighbors to use. The original dataset must fit entirely in

memory. We then compared the performance of ACOFSS,

PSOFSS and SMOTE as feature subset selection methods

in order to obtain the best attributes for the classification

data mining purpose. In attribute selection methods, we

combine ACO and PSO with rough and fuzzy rough-based

attribute evaluators to obtain the best possible set of fea-

tures for efficient classification. On the other hand, in

instance-based feature selection method, SMOTE is used

with 5-nearest neighbor presentation. Once, the feature

selection is done, the next step is to apply the data with the

reduced feature set to the classifier where we propose to

use support vector machine (SVM), random forest (RF)

and fuzzy rough K-nearest neighbor (FRKNN) for classi-

fication data mining. We used Lukasiewitz fuzzy implica-

tion operator in place of Kleene–Dienes implications, for

getting a better classification result. At last, the experi-

mental results will be validated with the full training set,

Table 1 Information about the features of the hepatitis dataset

Number Name of features The values of features

1 Age 10, 20, 30, 40, 50, 60, 70, 80

2 Sex Male, female

3 Steroid Yes, no

4 Antivirals Yes, no

5 Fatigue Yes, no

6 Malaise Yes, no

7 Anorexia Yes, no

8 Liver big Yes, no

9 Liver firm Yes, no

10 Spleen palpable Yes, no

11 Spiders Yes, no

12 Ascites Yes, no

13 Varices Yes, no

14 Bilirubin 0.39, 0.80, 1.20, 2.00, 3.00, 4.00

15 Alk phosphate 33, 80, 120, 160, 200, 250

16 SGOT 13, 100, 200, 300, 400, 500

17 Albumin 2.1, 3.0, 3.8, 4.5, 5.0, 6.0

18 Protime 10, 20, 30, 40, 50, 60, 70, 80, 90

19 Histology Yes, no

Table 2 Breast cancer-W dataset attribute information

# Attribute Domain

1. Sample code number Id number

2. Clump thickness 1–10

3. Uniformity of cell size 1–10

4. Uniformity of cell shape 1–10

5. Marginal adhesion 1–10

6. Single epithelial cell size 1–10

7. Bare nuclei 1–10

8. Bland chromatin 1–10

9. Normal nucleoli 1–10

10. Mitoses 1–10

11. Class 2 for benign,

Validation

Dataset

Feature subset evaluation method
(Fuzzy rough, SMOTE)

Feature search method
(ACO+PSO)

Classifier using Fuzzy
rough K-NN, SVM,
Random Forest)

using Full
training, 5-
fold CV and
66% training
with rest as
testing

Fig. 5 Proposed classification

data mining process
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fivefold cross-validation and with using 66 % training set

and rest for testing purpose.

Now, in order to test the statistical significance of all the

used algorithms on all datasets, we use parametric test

(t test and z test) and nonparametric test (Sign test and

Winkolson’s signed-rank test) for classification accuracy.

6 Experimental results and discussions

In this section, the effectiveness of the various hybrid

evolutionary algorithms is demonstrated on different real-

life datasets obtained from UCI repository. All the

experiments are carried out in Java environment [67] in a

Intel PIV, Windows XP, 2.66 GHz CPU, 512 MB RAM

with all the default parameters. First, we carried out

feature subset selection on the datasets using FRFS and

ACO (or PSO) with FRKNN classifier (with K = 10)

methods. The obtained results are shown in Tables 3 and

4 with the classification accuracy, the reduced feature

subset size). Seeing the effectiveness of PSO over ACO,

we conduct more experiments using FRSE and PSO with

SVM and then with RF classifier, as a hit and trial

method for obtaining better classification accuracy. These

can be observed from Tables 5 and 6. Further, we used

SMOTE as an instance selection method to select the

desired instances and then classified the data with

FRKNN, SVM and RF classifier. The results are pro-

vided in Tables 7, 8 and 9. All the tables are provided

with best reduced features, % feature reductions as ratio

between total selected features to the total number of

features available in the respective dataset, classification

accuracy obtained from using (i) whole training set, (ii)

fivefold cross-validation and (iii) 66 % training and the

rest as testing data for all the methodologies discussed,

and lastly with fitness value obtained from the following

formula:

Fitness Value ¼ a � Accuracy Rate þ 1� að ÞReduction Rate

ð2Þ

where accuracy rate is the accuracy achieved by the clas-

sifier during the classification process, and the reduction

rate as the ratio between the numbers of features selected to

the total number of features available in the dataset. The

evaluation criteria using fitness value is a crucial issue in

the implementation of stochastic algorithms, as the classi-

fication quality parameter outclasses that of subset length.

Here, we use the constant a = 0.5. From the results, it is

quite evident that the fitness values are to be improved

further.

Table 3 FRSE ? ACO ? FRKNN, K = 10; average accuracy with fivefold CV = 71.465 %

Dataset Actual

features

Reduced best features % Reductions Training

accuracy (%)

Fivefold cross-

validation

accuracy (%)

66 % training

and rest testing

accuracy (%)

Fitness

value

IRIS 5 5 100 100 88.67 90.2 0.951

Tic-Tac-Toe 10 2 (4, 10) 20 65.36 34.7 30.98 0.255

Hepatitis 20 13 (1, 2, 3, 4, 5, 6, 11, 13,

14, 16, 17, 19, 20)

65 99.4 69.1 66.1 0.655

Pima diabetis 9 9 100 100 67.6 70.2 0.851

Wisconsin breast cancer 10 8 (1, 2, 4, 5, 6, 7, 9, 10) 80 100 95.42 95.8 0.879

Heart-C 14 8 (1, 3, 4, 5, 8, 10, 12, 14) 57.14 100 73.3 69.9 0.635

Table 4 FRSE ? PSO ? FRNN; average accuracy with fivefold CV = 78.52 %

Dataset Actual

features

Reduced Best features % Reductions Training

accuracy (%)

fivefold cross-

validation

66 % training

and rest testing

Fitness

value

IRIS 5 5 100 100 88.67 90.2 0.95

Tic-Tac-Toe 10 9 (2, 3, 4, 5, 6, 7, 8, 9, 10) 90 100 67.01 63.5 0.767

Hepatitis 20 12 (1, 2, 3, 4, 6, 9, 10,

11, 14, 15, 19, 20)

60 99.36 76.8 79.3 0.684

Pima diabetis 9 9 100 100 67.6 70.2 0.851

Wisconsin breast cancer 10 8 (1, 2, 4, 5, 6, 7, 9, 10) 80 100 95.42 95.8 0.879

Heart-C 14 9 (1, 3, 5, 7, 8, 10, 12, 13, 14) 64.29 100 75.57 68.93 0.666
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Table 5 FRSE ? PSO ? SVM; average accuracy with fivefold CV = 85.38 %

Dataset Actual

features

Reduced best features %

Reductions

Training

accuracy (%)

Fivefold

cross-

validation

66 % training

and rest testing

Fitness

value

IRIS 5 5 100 96.67 96.67 96.07 0.98

Tic-Tac-Toe 10 9 (2, 3, 4, 5, 6, 7, 8, 9, 10) 90 77.66 76.4 95.46 0.827

Hepatitis 20 12 (1, 2, 3, 4, 6, 9, 10,

11, 14, 15, 19, 20)

60 87.09 81.94 86.79 0.734

Pima diabetis 9 9 100 77.48 77.21 79.31 0.896

Wisconsin breast cancer 10 8 (1, 2, 4, 5, 6, 7, 9, 10) 80 96.71 96.57 96.22 0.881

Heart-C 14 9 (1, 3, 5, 7, 8, 10, 12, 13, 14) 64.28 84.16 83.5 81.56 0.729

Table 6 FRSE ? PSO ? random forest; average accuracy with fivefold CV = 85.08 %

Dataset Actual

features

Reduced best features %

Reductions

Training

accuracy (%)

Fivefold

cross-

validation

66 % training

and rest testing

Fitness

value

IRIS 5 5 100 99.33 95.33 96.07 0.98

Tic-Tac-Toe 10 9 (2, 3, 4, 5, 6, 7, 8, 9, 10) 90 99.38 81.63 79.15 0.846

Hepatitis 20 12 (1, 2, 3, 4, 6, 9, 10, 11,

14, 15, 19, 20)

60 98.7 81.94 79.3 0.697

Pima diabetis 9 9 100 98.31 75.26 77.78 0.889

Wisconsin breast cancer 10 8 (1, 2, 4, 5, 6, 7, 9, 10) 90 99.78 97.45 97.19 0.936

Heart-C 14 9 (1, 3, 5, 7, 8, 10, 12, 13, 14) 64.28 98.34 78.87 78.64 0.715

Table 7 SMOTE ? FRNN; Average accuracy with fivefold CV = 82.8 %

Dataset Actual

features

Reduced best features %

Reductions

Training

accuracy (%)

Fivefold

cross-

validation

66 % training

and rest testing

Fitness

value

IRIS 5 5 100 100 92.5 88.3 0.942

Tic-Tac-Toe 10 10 100 100 64.5 63.8 0.819

Hepatitis 20 20 100 99.5 82.9 76.6 0.883

Pima diabetis 9 9 100 100 77.2 77.3 0.887

Wisconsin breast cancer 10 10 100 100 98.2 97.8 0.989

Heart-C 14 9 (1, 3, 5, 7, 8, 10, 12, 13, 14) 64.28 100 81.5 82 0.731

Table 8 SMOTE ? SVM; average accuracy with fivefold CV = 88.34 %

Dataset Actual

features

Reduced best features % Reductions Training

accuracy (%)

Fivefold cross-

validation

66 % training

and rest testing

Fitness

value

IRIS 5 5 100 97.5 97.5 97.1 0.985

Tic-Tac-Toe 10 10 100 87.9 87.9 90.9 0.955

Hepatitis 20 20 100 90.9 85.6 79.68 0.898

Pima diabetis 9 9 100 75.1 74.6 74.8 0.874

Wisconsin

breast cancer

10 10 100 97.55 96.92 95.94 0.98

Heart-C 14 9 (1, 3, 5, 7, 8, 10, 12, 13, 14) 64.28 89.6 87.52 84.67 0.745
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In order to provide the efficacy of the proposed

approaches, a comparison with the other existing literature

is provided in Table 10.

Further, the consistency attainment of the algorithms

used with parametric and nonparametric tests are provided

in Tables 11, 12, 13 and 14 with their P value at 95 %

confidence level (0.05 significance level).

It can also be observed that the feature reduction is done

from 20 to 100 %, but the important objective of the fea-

ture selection algorithm is to select as less as possible while

ensuring classification accuracy. In that point, even though

the SMOTE-based classifiers could achieve more classifi-

cation accuracy, the features could not be reduced, hence

taking more time to build the model, in comparison with

FRSE ? PSO-based classifiers.

From Table 10, we can conclude that even though not a

single algorithm performs better in all six datasets con-

sidered in this study, our SMOTE ? RF performs best in

Hepatitis and Heart-c dataset, close to the best in other

datasets.

From Tables 11 and 12 using parametric statistical test

of significance (z test and t test), the following observations

are obtained.

• With Z Test

(i) SMOTE ? RF is the only one among all the

compared classification algorithms that out-

perform FRSE ? ACO ? FRKNN and

FRSE ? PSO ? FRNN both.

Table 9 SMOTE ? random forest; average accuracy with fivefold CV = 90.04 %

Dataset Actual

features

Reduced best features % Reductions Training

accuracy (%)

fivefold cross-

validation

66 % training

and rest testing

Fitness

value

IRIS 5 5 100 100 95.5 94.12 0.97

Tic-Tac-Toe 10 10 100 99.85 94.96 90.66 0.953

Hepatitis 20 20 100 98.39 88.76 73.44 0.867

Pima diabetis 9 9 100 98.94 77.89 75 0.875

Wisconsin breast cancer 10 10 100 99.79 97.87 96.88 0.985

Heart-C 14 9 (1, 3, 5, 7, 8, 10, 12, 13, 14) 64.28 99.1 85.26 86 0.751

Table 10 Comparison of the classification accuracy

Dataset SMOTE ? RF [ours] EIS ? RFS [68] S-AIRS [69] FR ? SVM [70] RSES [71] HEA [72] Fuzzy [73]

IRIS 95.5 96.00 – – – 96.60 –

Tic-Tac-Toe 94.96 78.29 – – 100 – 73.64

Hepatitis 88.76 82.58 – 56.14 – 86.12 –

Pima diabetis 77.89 74.80 – – – 78.26 75.03

Wisconsin breast cancer 97.87 96.42 96.91 98.71 94.4 76.2 98.05

Heart-C 85.26 55.16 – 83.33 – 84.07 –

The significance of bold indicates highest accuracy for that algorithm over all others, for that dataset

Table 11 Summary of z test between any two of the compared classification methods

FRSE ? ACO ?

FRKNN

FRSE ? PSO ?

FRNN

SMOTE ?

FRNN

SMOTE ?

SVM

FRSE ?

PSO ? RF

FRSE ? PSO ?

SVM

SMOTE ?

RF

FRSE ? ACO ? FRKNN –

FRSE ? PSO ? FRNN 0.473 –

SMOTE ? FRNN 0.253 0.523 –

SMOTE ? SVM 0.07 0.09 0.35 –

FRSE ? PSO ? RF 0.148 0.271 0.708 0.520 –

FRSE ? PSO ? SVM 0.139 0.249 0.672 0.559 0.954 –

SMOTE ? RF 0.043 0.039 0.207 0.713 0.305 0.336 –
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(ii) No sufficient evidence is found in order to

conclude whether anyone among SMOTE ?

FRNN, SMOTE ? SVM, FRSE ? PSO ? RF,

FRSE ? PSO ? SVM and SMOTE ? RF is

statistically significant than the other.

• With t test

(i) The observation is such that no algorithm is

found to outperform the other.

As parametric statistical test of significance works with

assumptions about the shape of the distribution (i.e.,

assume a normal distribution) in the underlying population

and about the form or parameters (i.e., means and standard

deviations) of the assumed distribution, sometimes they

may provide misleading results. Hence, we propose to use

some nonparametric methods such as sign test and Wil-

coxon’s signed-rank test for obtaining the consistency in

operation of classifiers irrespective of dataset types. The

results obtained with sign test and Wilcoxon’s signed-rank

test on classification accuracy with 5 % significant level

and 95 % confidence levels are highlighted in Tables 13

and 14, respectively, with following observations:

Table 12 Summary of Student t test between any two of the compared classification methods

FRSE ? ACO ?

FRKNN

FRSE ? PSO ?

FRNN

SMOTE ?

FRNN

SMOTE ?

SVM

FRSE ?

PSO ? RF

FRSE ? PSO ?

SVM

SMOTE ?

RF

FRSE ? ACO ? FRKNN –

FRSE ? PSO ? FRNN 0.49 –

SMOTE ? FRNN 0.279 0.537 –

SMOTE ? SVM 0.1 0.121 0.372 –

FRSE ? PSO ? RF 0.179 0.297 0.716 0.534 –

FRSE ? PSO ? SVM 0.17 0.276 0.681 0.572 0.955 –

SMOTE ? RF 0.071 0.066 0.235 0.721 0.329 0.359 –

Table 13 Summary of Sign test between any two of the compared classification methods

FRSE ? ACO ?

FRKNN

FRSE ? PSO ?

FRNN

SMOTE ?

FRNN

SMOTE ?

SVM

FRSE ?

PSO ? RF

FRSE ? PSO ?

SVM

SMOTE ?

RF

FRSE ? ACO ? FRKNN –

FRSE ? PSO ? FRNN 0.25 –

SMOTE ? FRNN 0.061 0.219 –

SMOTE ? SVM 0.031 0.031 0.688 –

FRSE ? PSO ? RF 0.031 0.031 0.688 0.688 –

FRSE ? PSO ? SVM 0.031 0.031 0.688 0.219 1.0 –

SMOTE ? RF 0.031 0.031 0.219 0.688 0.031 0.219 –

Table 14 Summary of Wilcoxon’s signed-rank test between any two of the compared classification methods

FRSE ? ACO ?

FRKNN

FRSE ? PSO ?

FRNN

SMOTE ?

FRNN

SMOTE ?

SVM

FRSE ? PSO ?

RF

FRSE ? PSO ?

SVM

SMOTE ?

RF

FRSE ? ACO ? FRKNN –

FRSE ? PSO ? FRNN 0.181 –

SMOTE ? FRNN 0.031 0.063 –

SMOTE ? SVM 0.031 0.031 0.156 –

FRSE ? PSO ? RF 0.031 0.031 1.0 0.156 –

FRSE ? PSO ? SVM 0.031 0.031 0.313 0.156 0.787 –

SMOTE ? RF 0.031 0.031 0.063 0.313 0.031 0.094 –
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• Sign test

(i) SMOTE ? SVM, FRSE ? PSO ? RF,

FRSE ? PSO ? SVM and SMOTE ? RF

outperform FRSE ? ACO ? FRKNN and

FRSE ? PSO ? FRNN.

(ii) SMOTE ? RF outperforms FRSE ? PSO ?

RF, FRSE ? ACO ? FRKNN and FRSE ?

PSO ? FRNN; but does not statistically

significantly better than SMOTE ? FRNN,

SMOTE ? SVM and FRSE ? PSO ? SVM.

(iii) No sufficient evidence supports that whether

SMOTE ? RF, FRSE ? PSO ? SVM,

SMOTE ? SVM and SMOTE ? FRNN out-

perform one another in anyway.

As sign test cannot distinguish between 0.01 and 10.0,

consider both the same, we propose to explore the Wil-

coxon signed-rank test.

• Wilcoxon’s signed-rank test

(i) SMOTE ? FRNN, SMOTE ? SVM, FRSE ?

PSO ? RF, FRSE ? PSO ? SVM and SMO-

TE ? RF outperform FRSE ? ACO ?

FRKNN. However, SMOTE ? FRNN is not

statistically significant than FRSE ? PSO ?

FRNN.

(ii) SMOTE ? RF is statistically superior

to FRSE ? PSO ? RF, FRSE ? ACO ?

FRKNN and FRSE ? PSO ? FRNN.

(iii) No sufficient evidence is obtained in order to

make a decision whether SMOTE ? RF,

SMOTE ? FRNN, SMOTE ? SVM and

FRSE ? PSO ? SVM are having more sta-

tistical significance than the other.

From all the above statistical test, it is apparent that even

though the average classification accuracy of SMO-

TE ? RF is more than that of SMOTE ? FRNN, SMO-

TE ? SVM and FRSE ? PSO ? SVM, still it is not found

to be statistically significant in comparison with the other.

Further, it is worth noting here that average classification

accuracy difference of 4.92 % (between SMOTE ? RF

and FRSE ? PSO ? RF) may be statistically significant,

whereas the difference of 7.2 % (between SMOTE ? RF

and SMOTE ? FRNN) is not statistically significant.

This may be understood that while average classifica-

tion accuracy provides knowledge about the average

performance of the algorithm over many used dataset

under this investigation, the statistical test, as discussed

above, provides an idea about the consistency of an

algorithm over another on each test dataset. Hence, even

though the accuracy difference is small among the

algorithms, one may be considered significantly better

than the other.

Finally, we perform statistically significant test for our

best algorithm SMOTE ? RF with highest average accu-

racy of 90.04 % with that of EIS ? RFS [68] with average

accuracy of 80.54 %, the following observations are made:

• P value with z test = 0.174; with t test = 0.204

• P value with sign test = 0.219; with Wilcoxon’s

signed-rank test = 0.063

• From both types of statistical test, it is concluded that

even though accuracy difference is around 10 %

between them, still SMOTE ? RF is not statistically

significant than EIS ? RFS.

7 Conclusion

Feature selection plays an important role in classification

data mining. Feature evaluation functions used to compute

the quality of features are a key issue in feature selection.

In the rough set theory dependency and fuzzy dependency

has been successfully used to evaluate features. However,

we find these function are not robust. In practice, data are

usually corrupted by noise. So design of robust models of

rough sets using bio-inspired algorithms and SMOTE are

discussed. Further, we used SVM and RF to build efficient

classifiers using PSO and fuzzy rough set feature reduction

techniques. Based on the analysis, many hybrid algorithms

based on FRSE are proposed to combine the strengths of

FR-KNN, SVM, RF and the PSO classifier. Instance-based

supervised feature selection method SMOTE is also used

along with SVM, FRKNN and RF in order to understand

the efficacy of the classification accuracy of the proposed

system. Extensive experiments conducted on these meth-

odologies to validate the classification data mining in the

real-life datasets. Even though FRSE ? PSO is considered

to provide faster, stable, effective average classification

data mining, still the SMOTE-based SVM classifier steals

the show with better accuracy and fitness value.

We conducted z test, t test, sign test and Wilcoxon’s

signed-rank test to evaluate the performance comparison

various classification data mining methods. We observed

that the Wilcoxon signed-rank test is better than all other

kinds of statistical test. We also found that there is no

sufficient evidence to support the SMOTE ? RF statisti-

cally significant in comparison with other hybrid evolu-

tionary algorithms discussed even though it has the highest

average accuracy among all. This may be envisaged from

here that different classification algorithms may be able to

suits for a dataset, whereas the other does not.
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