
PERFORMANCE COMPARISON OF SIX

EFFICIENT PURE HEURISTICS FOR

SCHEDULING META-TASKS ON

HETEROGENEOUS DISTRIBUTED

ENVIRONMENTS

Hesam Izakian∗, Ajith Abraham∗, Václav Snášel†

Abstract: Scheduling is one of the core steps to efficiently exploit the capabilities
of heterogeneous distributed computing systems and represents an NP-complete
problem. Therefore, using meta-heuristic algorithms is a suitable approach in order
to cope with its difficulty. In many meta-heuristic algorithms, generating individ-
uals in the initial step has an important effect on the convergence behavior of the
algorithm and final solutions. Using some pure heuristics for generating one or more
near-optimal individuals in the initial step can improve the final solutions obtained
by meta-heuristic algorithms. Pure heuristics may be used solitary for generating
schedules in many real-world situations in which using the meta-heuristic methods
are too difficult or inappropriate. Different criteria can be used for evaluating the
efficiency of scheduling algorithms, the most important of which are makespan and
flowtime. In this paper, we propose an efficient pure heuristic method and then
we compare the performance with five popular heuristics for minimizing makespan
and flowtime in heterogeneous distributed computing systems. We investigate the
effect of these pure heuristics for initializing simulated annealing meta-heuristic
approach for scheduling tasks on heterogeneous environments.

Key words: Heterogeneous distributed environments, scheduling, makespan,
flowtime, pure heuristic

Received: October 12, 2008
Revised and accepted: September 22, 2009

∗Hesam Izakian, Ajith Abraham – Corresponding Author
Machine Intelligence Research Labs – MIR Labs, http://www.mirlabs.org, E-mail:
ajith.abraham@ieee.org, hesam.izakian@gmail.com

†Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Os-
trava, Czech Republic, E-mail: vaclav.snasel@vsb.cz

c©ICS AS CR 2009 695



Neural Network World 6/09, 695-710

1. Introduction

Mixed-machine heterogeneous computing (HC) environments utilize a distributed
suite of different high-performance machines, interconnected with high-speed links,
to perform different computationally intensive applications that have diverse com-
putational requirements [1, 2]. To exploit the different capabilities of a suite of
heterogeneous resources, typically a resource management system (RMS) allocates
the resources to the tasks and the tasks are ordered for execution on the resources.
At a time interval in HC environment a number of tasks are received by RMS from
different users. Different tasks have different requirements and different resources
have different capabilities. Optimally scheduling is mapping a set of tasks to a
set of resources to efficiently exploit the capabilities of such systems and is one
of the key problems in HC environments. As mentioned in [3, 4], optimally map-
ping tasks to machines in an HC suite is an NP-complete problem and, therefore,
the use of meta-heuristics is one of the suitable approaches. The most popular of
meta-heuristic algorithms are genetic algorithm (GA) [14], Tabu search (TS) [15],
simulated annealing (SA) [16], ant colony optimization (ACO) [17], and particle
swarm optimization (PSO) [18]. Ritchie and Levine [8] used a hybrid ant colony
optimization and Yarkhan and Dongarra [9] used simulated annealing approach for
task scheduling in HC systems. Genetic algorithm addressed for this problem in
several works (Page and Naughton [5], Singh and Youssef [6] and Wang et al. [7]).
Also Izakian et al. used PSO for task scheduling in HC systems [19, 20].

In many meta-heuristic algorithms and based on the problem that is to be
solved, generating individuals in the initial step has an important effect on the
convergence behavior of the algorithm and final solutions. Therefore using some
pure heuristics for generating one or more near-optimal individuals in the initial
step can improve the final solutions obtained by meta-heuristic algorithms. On
the other hand, in some real-world situations the meta-heuristic methods are too
difficult or inappropriate, for example in fully-automated systems (where we cannot
tune parameters manually) or where the execution time should be very short, or for
extremely large problems, etc. Therefore using pure heuristics in such situations is
an appropriate solution.

Existing scheduling heuristics can be divided into two classes [12]: on-line mode
(immediate mode) and batch-mode heuristics. In the on-line mode, a task is
mapped onto a host as soon as it arrives at the scheduler. In the batch mode,
tasks are not mapped onto hosts immediately and they are collected into a set of
tasks that is examined for mapping at prescheduled times called mapping events.
The on-line mode heuristic is suitable for the low arrival rates, while batch-mode
heuristics can achieve higher performance when the arrival rate of tasks is high
because there will be a sufficient number of tasks to keep hosts busy between the
mapping events, and scheduling is according to the resource requirement informa-
tion of all tasks in the set [12]. In this paper, we considered batch-mode heuristics.

Different criteria can be used for evaluating the efficiency of scheduling algo-
rithms, the most important of which are makespan and flowtime. Makespan is the
time when HC system finishes the latest task, and flowtime is the sum of finaliza-
tion times of all the tasks. An optimal schedule will be the one that minimizes the
flowtime and makespan.

696



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

In this paper, we propose an efficient heuristic called min-max. Also we in-
vestigate the efficacy of min-max and 5 popular pure heuristics for minimizing
makespan and flowtime. These heuristics are min-min, max-min, LJFR-SJFR, suf-
ferage, and WorkQueue. These heuristics are popular, effective, and are used in
many studies. Also we investigate the effect of these pure heuristics for initializing
simulated annealing meta-heuristic approach for task scheduling on heterogeneous
environments.

So far, some of works have been done for investigating a number of these heuris-
tics for minimizing makespan, yet no attempts has been made to minimize flowtime
or both flowtime and makespan. Also the efficiency of these heuristics is investi-
gated on simple benchmarks, and the various characteristics of machines and tasks
in HC environments are not considered. In this paper, we investigate the efficiency
of these heuristics on HC environments with various characteristics of both ma-
chines and tasks. In this study, we were able to identify which heuristic is suitable
for generating near-optimal solutions or to initialize meta-heuristics based on the
objective function and the characteristics of HC environments.

The remainder of this paper is organized in the following manner: Section 2
formulates the problem, in Section 3 we provide the definitions of heuristics, and
Section 4 reports the experimental results. Finally Section 5 concludes this work.

2. Problem Formulation

An HC environment is composed of computing resources where these resources
can be a single PC, a cluster of workstations or a supercomputer. Let T =
{T1, T2, . . . , Tn} denotes the set of tasks that is submitted to RMS in a specific
time interval. Assume the tasks are independent of each other (with no inter-task
data dependencies) and preemption is not allowed (they cannot change the resource
they have been assigned to). Also assume at the time of receiving these tasks by
RMS, m machines M = {M1, M2, . . . , Mm} are within the HC environment. In
this paper, scheduling is done at machine level and it is assumed that each machine
uses First-Come, First-Served (FCFS) method for performing the received tasks.
We assume that each machine in HC environment can estimate how much time is
required to perform each task. In [2] Expected Time to Compute (ECT) matrix
is used to estimate the required time for executing a task in a machine. An ETC
matrix is an n×m matrix in which n is the number of tasks and m is the number
of machines. One row of the ETC matrix contains the estimated execution time
for a given task on each machine. Similarly, one column of the ETC matrix con-
sists of the estimated execution time of a given machine for each task. Thus, for
an arbitrary task Tj and an arbitrary machine Mi, ETC(Tj ,Mi) is the estimated
execution time of Tj on Mi. In ETC model, we take the usual assumption that we
know the computing capacity of each resource, an estimation or prediction of the
computational needs of each task, and the load of prior work of each resource.

Assume that Eij(i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}) is the execution time for
performing jth task in ith machine and Wi(i ∈ {1, 2, . . . ,m}) is the previous work-
load of Mi (the time required for performing the tasks given to it in the previous
steps), then Eq. (1) shows the time required for Mi to complete the tasks included
in it. According to the aforementioned definition, makespan and flowtime can be

697



Neural Network World 6/09, 695-710

estimated using Eq. (2) and Eq. (3) respectively.
∑

Eij+Wi

, j ∈ {1, 2, . . . , n} (1)

makespan = max





∑

Eij+Wi



 , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n} (2)

flowtime =
∑m

i=1
Eij , j ∈ {1, 2, . . . , n} (3)

As mentioned in the previous section, the goal of the scheduler in this paper is to
minimize makespan and flowtime.

3. Heuristic Descriptions

This section provides the description of 5 popular heuristics for mapping tasks to
available machines in HC environments. Then we propose an efficient heuristic
called min-max.

3.1 Min-min heuristic

Min-min heuristic uses minimum completion time (MCT) as a metric, means that
the task which can be completed earliest is given priority. This heuristic begins
with the set U of all unmapped tasks. Then the set of minimum completion times,
M = {min(completion time(Ti,Mj)) for (1 ≤ i ≤ n, 1 ≤ j ≤ m)}, is found. M
consists of one entry for each unmapped task. Next, the task with the overall
minimum completion time from M is selected and assigned to the corresponding
machine. Then the workload of the selected machine will be updated and finally
the newly mapped task is removed from U . This process repeats until all tasks
are mapped (i.e. U is empty) [2, 10]. Fig. 1 shows the pseudo code of min-min
heuristic.

3.2 Max-min heuristic

Max-min heuristic is very similar to min-min and its metric is MCT too. It begins
with the set U of all unmapped tasks. Then the set of minimum completion times,
M = {min(completion time(Ti,Mj)), for (1 ≤ i ≤ n, 1 ≤ j ≤ m)}, is found.
Next, the task with the overall maximum completion time from M is selected and
assigned to the corresponding machine, and the workload of the selected machine
will be updated. Finally the newly mapped task is removed from U and the process
repeats until all tasks are mapped [2, 10]. Fig. 2 shows the pseudo code of max-min
heuristic.

3.3 LJFR-SJFR heuristic

Longest Job to Fastest Resource – Shortest Job to Fastest Resource (LJFR-SJFR)
[11] heuristic begins with the set Uof all unmapped tasks. Then the set of minimum

698



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

// min-min heuristic
U = set of unmapped tasks
while U 6= empty do

Z = empty;
for each task Tj ∈ U do

for each machine Mi, i = 1, 2, . . .,m do
Cij = Wi + Eij ;

end
Cxj = min(Cij), ∀i = 1, 2, . . . , m;
Z = Z ∪ Cxj ;

end
Select Cqp = min(Cxy), Cxy ∈ Z;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end

Fig. 1 The pseudo code of min-min heuristic.

// max-min heuristic
U = set of unmapped tasks
while U 6= empty do

Z = empty;
for each task Tj ∈ U do

for each machine Mi, i = 1, 2, . . .,m do
Cij = Wi + Eij ;

end
Cxj = min(Cij), ∀i = 1, 2, . . . , m;
Z = Z ∪ Cxj ;

end
Select Cqp = max(Cxy), Cxy ∈ Z;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end

Fig. 2 The pseudo code of max-min heuristic.

completion times, M = {min(completion time(Ti, Mj)) for (1 ≤ i ≤ n, 1 ≤ j ≤
m)}, is found the same as min-min. Next, the task with the overall minimum com-
pletion time from M is considered as the shortest job in the fastest resource (SJFR).
Also the task with the overall maximum completion time from M is considered as
the longest job in the fastest resource (LJFR). At the beginning, this method as-
signs the m longest tasks to the m available fastest resources (LJFR). Then this
method assigns the shortest task to the fastest resource, and the longest task to the

699



Neural Network World 6/09, 695-710

fastest resource alternatively. After each allocation, the workload of each machine
will be updated. Fig. 3 shows the pseudo code of LJFR-SJFR heuristic.

// LJFR-SJFR heuristic
U = set of unmapped tasks
for m times do

Select task Tp and machine Mq the same as max-min heuristic;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end
while U 6= empty do

Select task Tp and machine Mq the same as min-min heuristic;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;
if U = empty then

Terminate;
end
Select task Tp and machine Mq the same as max-min heuristic;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end

Fig. 3 The pseudo code of LJFR-SJFR heuristic.

3.4 Sufferage heuristic

In this heuristic for each task, the minimum and second minimum completion time
are found in the first step. The difference between these two values is defined as the
sufferage value. In the second step, the task with the maximum sufferage value is
assigned to the corresponding machine with minimum completion time. Sufferage
heuristic is based on the idea that better mappings can be generated by assigning
a machine to a task that would “suffer” most in terms of expected completion time
if that particular machine is not assigned to it [12]. Fig. 4 shows the pseudo code
of Sufferage heuristic.

3.5 WorkQueue heuristic

This heuristic is a straightforward and adaptive scheduling algorithm for scheduling
sets of independent tasks [13]. In this method, the heuristic selects a task randomly
and assigns it to the machine as soon as it becomes available (in other word,
machine with minimum workload). Fig. 5 shows the pseudo code of WorkQueue
heuristic.

700



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

// Sufferage heuristic
U = set of unmapped tasks
while U 6=empty do

Z = empty;
for each task Tj ∈ U do

for each machine Mi, i = 1, 2, . . ., m do
Cij = Wi + Eij ;

end
Cxj = min(Cij), ∀i = 1, 2, . . . , m;
Ckj = min(Cij), ∀i = 1, 2, . . . , m, i 6= x
Sufferxj = Ckj − Cxj ;
Z = Z ∪ Sufferxj ;

end
Select Sufferqp = max(Sufferxy), Sufferxy ∈ Z;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end

Fig. 4 The pseudo code of Sufferage heuristic.

// WorkQueue heuristic
U = set of unmapped tasks
while U 6= empty do

Select a task Tp ∈ U randomly
Wq = min(Wi), ∀i = 1, 2, . . . ,m;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end

Fig. 5 The pseudo code of WorkQueue heuristic.

3.6 Proposed heuristic

This heuristic (called min-max) is composed of two steps for mapping each task and
uses the minimum completion time in the first step, and the minimum execution
time in the second as metric. In the first step, this heuristic begins with the
set U of all unmapped tasks. Then the set of minimum completion times, M =
{min(completion time(Ti,Mj)) for (1 ≤ i ≤ n, 1 ≤ j ≤ m)}, is found the same
as min-min heuristic. In the second step, the task whose minimum execution time
(time for executing task on the fastest machine) divided by its execution time on
the selected machine (in the first step) has the maximum value, will be selected
for mapping. The intuition behind this heuristic is that we select pair machines
and tasks from the first step that the machine can executes its corresponding task

701



Neural Network World 6/09, 695-710

effectively with a lower execution time in comparison with other machines. Fig. 6
shows the pseudo code of proposed min-max heuristic.

// proposed min-max heuristic
U = set of unmapped tasks
while U 6= empty do

Z = empty;
for each task Tj ∈ U do

for each machine Mi, i=1,2,. . . , m do
Cij = Wi + Eij ;

end
Cxj = min(Cij), ∀i = 1, 2, . . . , m;
Ehj = min(Eij), ∀i = 1, 2, . . . ,m;
Kxj = Exj/Ehj ;
Z = Z ∪Kxj ;

end
Select Kqp = max(Kxy), Kxy ∈ Z;
Allocate task Tp to machine Mq;
Wq = Wq + Eqp;
U = U − Tp;

end

Fig. 6 The pseudo code of proposed min-max heuristic.

4. Experimental Results

In this section, after describing the benchmark problems, we compared the per-
formance of 6 pure heuristics for minimizing makespan and flowtime. Also we
investigate the effect of this pure heuristics for initializing the simulated annealing
algorithm (which is a popular meta-heuristic algorithm) for scheduling independent
tasks on HC environments.

4.1 Benchmark problems

In this paper, we used the benchmark proposed in [2]. The simulation model
in [2] is based on expected time to compute (ETC) matrix for 512 tasks and 16
machines. The instances of the benchmark are classified into 12 different types of
ETC matrices according to the three following metrics: task heterogeneity, machine
heterogeneity, and consistency. In ETC matrix, the amount of variance among
the execution times of tasks for a given machine is defined as task heterogeneity.
Machine heterogeneity represents the variation that is possible among the execution
times for a given task across all the machines. Also an ETC matrix is said to be
consistent whenever a machine Mj executes any task Ti faster than machine Mk;
in this case, machine Mj executes all tasks faster than machineMk. In contrast,
inconsistent matrices characterize the situation where machine Mj may be faster

702



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

than machine Mk for some tasks and slower for others. Partially-consistent matrices
are inconsistent matrices that include a consistent sub-matrix of a predefined size
[2]. Instances consist of 512 tasks and 16 machines and are labeled as u-yy-zz-x as
follows:

– u means uniform distribution used in generating the matrices

– yy indicates the heterogeneity of the tasks; hi means high and lo means low

– zz represents the heterogeneity of the machines; hi means high and lo means
low

– x shows the type of inconsistency; c means consistent, i means inconsistent,
and p means partially-consistent.

For example, u-lo-hi-c means low heterogeneity in tasks, high heterogeneity in
machines, and consistent environment.

4.2 Comparison of mentioned heuristics

These pure heuristics are implemented using C++ programming language and are
run on 12 different types of ETC matrices. The obtained makespan and flowtime
using mentioned heuristics are compared in Tabs. I and II respectively. The results
are obtained as an average of five simulations. In these tables, the first column
indicates the instance name, and the second, third, fourth, fifth and sixth columns
indicate the makespan and flowtime of WorkQueue, max-min, LJFR-SJFR, Suf-
ferage, min-min and min-max heuristics. Fig. 7 and Fig. 8 show the geometric
mean of makespan and flowtime for the 12 considered cases. As is evident from the
figures, min-max, the proposed heuristic, can minimize the makespan better than
others in most cases. Also min-min heuristic can minimize flowtime better than
others.

Instance WorkQueue Max-Min LJFR-SJFR Sufferage Min-Min Min-Max

u-lo-lo-c 7332 6753 6563 5461 5468 5310
u-lo-lo-p 8258 5947 5179 3433 3599 3327
u-lo-lo-i 9099 4998 4251 2577 2734 2523

u-lo-hi-c 473353 400222 391715 333413 279651 273467
u-lo-hi-p 647404 314048 279713 163846 157307 146953
u-lo-hi-i 836701 232419 209076 121738 113944 102543

u-hi-lo-c 203180 203684 202010 170663 164490 164134
u-hi-lo-p 251980 169782 155969 105661 106322 103321
u-hi-lo-i 283553 153992 138256 77753 82936 77873

u-hi-hi-c 13717654 11637786 11305465 9228550 8145395 7878374
u-hi-hi-p 18977807 9097358 8027802 4922677 4701249 4368071
u-hi-hi-i 23286178 7016532 6623221 3366693 3573987 2989993

Tab. I Comparison of results on makespan (Seconds).

703



Neural Network World 6/09, 695-710

Instance WorkQueue Max-Min LJFR-SJFR Sufferage Min-Min Min-Max

u-lo-lo-c 108843 108014 102810 86643 80354 84717
u-lo-lo-p 127639 95091 81861 54075 51399 52935
u-lo-lo-i 140764 79882 66812 40235 39605 39679

u-lo-hi-c 7235486 6400684 6078313 5271246 3918515 4357089
u-lo-hi-p 10028494 5017831 4383010 2568300 2118116 2323396
u-lo-hi-i 12422991 3710963 3303836 1641220 1577886 1589574

u-hi-lo-c 3043653 3257403 3153607 2693264 2480404 2613333
u-hi-lo-p 3776731 2714227 2461337 1657537 1565877 1640408
u-hi-lo-i 4382650 2462485 2181042 1230495 1214038 1205625

u-hi-hi-c 203118678 185988129 173379857 145482572 115162284 125659590
u-hi-hi-p 282014637 145337260 126917002 76238739 63516912 69472441
u-hi-hi-i 352446704 112145666 104660439 47237165 45696141 46118709

Tab. II Comparison of results on flowtime (Seconds).

Fig. 7 Comparison results between heuristics on makespan.

4.3 Using the mentioned heuristics for initializing simulated
annealing

Simulated annealing (SA) is an optimization technique inspired from Monte Carlo
methods in statistical mechanics. In this sub-section, we investigate the effect of the
mentioned pure heuristics to initialize the simulated annealing meta-heuristic for
scheduling tasks on heterogeneous environments. In this method, an initial solution
is generated randomly or using a pure heuristic and the system temperature is set
to a high value. In each step of the algorithm, the system temperature is decreased
based on a predefined cooling factor and in the last step finalizes to the freezing
temperature. Each step of the algorithm can include one or more iterations. In
each iteration, a new solution is generated by adding small changes to current
solution (e.g. using mutation operator). In this paper, this operator selects a task
randomly and moves it from its resource to another one, so that the new machine
is assigned to be different. If the new solution improves the objective function (in

704



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

Fig. 8 Comparison results between heuristics on flowtime.

this paper decreases the objective function), then it will be accepted and preserved
as current solution. On the other hand, if the objective function does not improve,
a random number z ∈ [0, 1) is selected. Then z is compared with y, where

y =
1

1 + e

(old objective function - new objective function)
temperature

(4)

If z > y the new solution is accepted; otherwise it is rejected, and the old
solution is kept. When the temperature is very large the poorer solutions can
be accepted by a high probability. In contrast, if the system temperature is very
small, the poorer solutions will usually be rejected. By this procedure the SA can
explore the problem search space effectively and escape from local optima. In this
paper, makespan and flowtime are used to evaluate the performance of scheduler
simultaneously. Since makespan and flowtime values are in incomparable ranges
and the flowtime has a higher magnitude order over the makespan (as can be
seen in Tab. I and Tab. II), the value of mean flowtime, flowtime / m, is used to
evaluate flowtime where m is the number of machines. The objective function of
each solution can be estimated using Eq. (5).

f(x) = (λ . makespan + (1− λ).mean flowtime), (5)

where λ controls the effectiveness of parameters used in this equation. The greater
is λ, more attention is paid by the scheduler in minimizing makespan and vise
versa. The smaller makespan and flowtime in Eq. (5) leads to a smaller objective
function value, and hence a better solution is regarded. In order to optimize the
performance of the SA, fine tuning has been performed and best values for its
parameters are selected. Tab. III shows the selected parameters for SA. Also Fig.
9 shows the pseudo code of proposed SA.

705



Neural Network World 6/09, 695-710

The obtained makespan and flowtime using SA are compared in Tabs. IV and V
respectively. In these tables the effect of initialization using 6 mentioned heuristics
and random method is compared. The results are obtained as an average of ten
independent runs for five simulations.

Parameter Description Value
λ In Eq. (5) 0.7
T (0) Initial temperature Objective function value

obtained by initial solution
T(freeze) Final temperature 10−10

Itr Number of iterations
in each temperature

100

C Cooling rate 0.9

Tab. III Parameter tuning for proposed SA.

Generate initial solution, x(0) randomly or using one of pure heuristics;
Set initial temperature = f(x(0));
while temperature > T(freeze) do

repeat Itr times
Generate a new solution, x(1) using mutation operator;
Determine quality f(x(1));
if f(x(1)) < f(x(0)) then

x(0) ← x(1);
else

z = rand [0, 1);
Calculate acceptances probability, y using Eq (4);
if z > y then

x(0) ← x(1);
else

preserve x(0) and reject x(1);
end

end
end
temperature = C× temperature;

end

Fig. 9 The pseudo code of the proposed SA.

As can be seen in Tab. IV and Tab. V:

– Using pure heuristics (instead of random method) for generating initial solu-
tions has an important effect on obtained final solutions and more effective
solutions can be generated.

– In some instances, SA scheduler can’t improve the solutions which generated
using pure heuristics.

706



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

– Minimizing makespan can lead to increasing in flowtime amount and vise
versa.

– For minimizing makespan the proposed min-max method performs better
than others in partially-consistent and inconsistent environments, while min-
min heuristic performs better than others in consistent environments.

– For minimizing flowtime the min-min method performs better than others
in consistent and partially-consistent environments, while the proposed min-
max heuristic performs better than others in inconsistent environments.

Instance Random
Work-

Max-Min
LJFR-

Sufferage Min-Min Min-Max
Queue SJFR

u-lo-lo-c 6267 5300 5301 5353 5303 5298 5312
u-lo-lo-p 3604 3555 3520 3458 3423 3542 3327
u-lo-lo-i 2590 2581 2565 2599 2563 2560 2523

u-lo-hi-c 545098 270529 267760 299709 311897 264281 269135
u-lo-hi-p 273568 180663 154830 155222 158623 155861 148949
u-lo-hi-i 108364 105978 105343 107426 105649 104022 102543

u-hi-lo-c 198499 161805 161621 164656 163298 161406 163125
u-hi-lo-p 108141 110412 107305 105578 104629 107979 103580
u-hi-lo-i 78733 78450 77968 77902 77625 77814 77809

u-hi-hi-c 15439648 7935460 7820153 8603537 8808243 7721432 7853547
u-hi-hi-p 6816472 5052386 4561310 4595143 4814050 4605232 4437986
u-hi-hi-i 3079057 3032995 3025251 3103927 3026366 3019183 2989993

Tab. IV Comparison of results on makespan obtained by SA and one of initializing
methods (Seconds).

Instance Random
Work-

Max-Min
LJFR-

Sufferage Min-Min Min-Max
Queue SJFR

u-lo-lo-c 94560 79024 78816 84352 83856 78656 80560
u-lo-lo-p 55088 53280 50352 50912 52480 48112 52928
u-lo-lo-i 40848 40784 40672 40976 40368 40544 39664

u-lo-hi-c 7482864 3798864 3765920 4727440 4933840 3644272 3886560
u-lo-hi-p 3130864 2632784 2081440 2304624 2416320 1958848 2225536
u-lo-hi-i 1661728 1638240 1632048 1660192 1633952 1622672 1589568

u-hi-lo-c 2966336 2425504 2425776 2606080 2571872 2417152 2480688
u-hi-lo-p 1683840 1642560 1529360 1585472 1617136 1477856 1630672
u-hi-lo-i 1244576 1242576 1234864 1234816 1229392 1232448 1207520

u-hi-hi-c 214952928 110491936 108906160 136272016 138255728 104842480 112613840
u-hi-hi-p 87220128 71689360 61012464 68732480 72772688 57206896 65564240
u-hi-hi-i 47367664 46694112 46681648 48080256 46840608 46708112 46118704

Tab. V Comparison of results on flowtime obtained by SA and one of initializing
methods (Seconds).

707



Neural Network World 6/09, 695-710

Fig. 10 and Fig. 11 show the comparison of obtained results using different
heuristics to generate initial solutions in SA for geometric mean of makespan and
flowtime respectively. As is evident in these figures, the SA can improve the initial
solutions which generated using some pure heuristics more in comparison with other
pure heuristics. For example, SA can improve the generated initial solutions using
WorkQueue and max-min more than others, while it can’t improve the generated
initial solutions using Sufferage effectively.

Fig. 10 Comparison results on makespan obtained by SA and one of initializing
methods.

Fig. 11 Comparison results on flowtime obtained by SA and one of initializing
methods.

708



Izakian H., Abraham A., Snášel V.: Performance comparison of six. . .

5. Conclusions

Scheduling is one of the core steps to efficiently exploit the capabilities of hetero-
geneous distributed computing systems and represents an NP-complete problem.
Using heuristics for scheduling in HC environments is an appropriate solution. In
this paper, we compared six heuristics for scheduling in HC environments. The
goal of the scheduler in this paper is minimizing makespan and flowtime. The ex-
perimental results show that the min-min heuristic can obtain the best results for
minimizing flowtime and the proposed heuristic (min-max) can obtain the best re-
sults for minimizing makespan too. Also we investigate the effect of the mentioned
pure heuristics for initializing simulated annealing meta-heuristic for scheduling
tasks on heterogeneous environments. The experimental results show that the
min-min and min-max heuristics are more effective than others for generating ini-
tial solutions in SA. Also we can find that min-min heuristic is more suitable for
consistent environments, while min-max heuristic is more suitable for inconsistent
environments for initializing meta-heuristic schedulers such as SA.

References

[1] Ali S., Braun T. D., Siegel H. J., Maciejewski A. A.: Heterogeneous computing. Encyclopedia
of Distributed Computing, Kluwer Academic, 2001.

[2] Braun T. D., Siegel H. J., Beck N., Boloni L. L., Maheswaran M., Reuther A. I., Robertson
J. P., Theys M. D., Yao B.: A Comparison of Eleven Static Heuristics for Mapping a Class of
Independent Tasks onto Heterogeneous Distributed Computing Systems. Journal of Parallel
and Distributed Computing, 61, 2001, pp. 810-837.

[3] Fernandez-Baca D.: Allocating modules to processors in a distributed system. IEEE Trans-
actions on Software Engineering, 15, 1989, pp. 1427-1436.

[4] Ibarra O. H., Kim C. E.: Heuristic algorithms for scheduling independent tasks on non-
identical processors. J. Assoc. Comput. Mach, 1977, pp. 280-289.

[5] Page J., Naughton J.: Framework for task scheduling in heterogeneous distributed computing
using genetic algorithms. Artificial Intelligence Review, 2005, pp. 415-429.

[6] Singh H., Youssef A.: Mapping and scheduling heterogeneous task graphs using genetic
algorithms. 5th IEEE Heterogeneous Computing Workshop, 1996, pp. 86-97.

[7] Wang L., Siegel H. J., Roychowdhury V. P., Maciejewski A. A.: Task matching and schedul-
ing in heterogeneous computing environments using a genetic algorithm based approach. J.
Parallel Distrib. Comput., 47, 1997, pp. 1-15.

[8] Ritchie G., Levine J.: A hybrid ant algorithm for scheduling independent jobs in heteroge-
neous computing environments. 23rd Workshop of the UK Planning and Scheduling Special
Interest Group, 2004.

[9] Yarkhan A., Dongarra J.: Experiments with scheduling using simulated annealing in a grid
environment. 3rd International Workshop on Grid Computing, 2002, pp. 232–242.

[10] Freund R. F., Gherrity M., Ambrosius S., Campbell M., Halderman M., Hensgen D., Keith
E., Kidd T., Kussow M., Lima J. D., Mirabile F., Moore L., Rust B., and Siegel H. J.:
Scheduling resources in multi-user, heterogeneous, computing environments with SmartNet.
7th IEEE Heterogeneous Computing Workshop, 1998, pp. 184-199.

[11] Abraham A., Buyya R., Nath B.: Nature’s heuristics for scheduling jobs on computational
grids. The 8th IEEE International Conference on Advanced Computing and Communica-
tions, 2000.

[12] Macheswaran M., Ali S., Siegel H. J., Hensgen D., Freund R. F.: Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems. J. Parallel Distribut. Comput.,
59, 1999, pp. 107-131.

709



Neural Network World 6/09, 695-710

[13] Hagerup T.: Allocating Independent Tasks to Parallel Processors: An Experimental Study.
Journal of Parallel and Distributed Computing, 47, 1997, pp. 185-197.

[14] Goldberg D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son Wesley. Reading. MA, 1997.

[15] Glover F.: Tabu search. ORSA Journal of Computing, 1, 1989, pp. 190-206.

[16] Kirkpatrick S., Gelatt Jr. C., Vecchi M.: Optimization by simulated annealing. Science, 220,
1983, pp. 671-680.

[17] Dorigo M.: Optimization, learning, and natural algorithms. Ph.D. Thesis, Dip. Elettronica
e Informazione, Politecnico di Milano, Italy, 1992.

[18] Kennedy J., Eberhart R.C.: Particle swarm optimization. Proceedings of the IEEE Interna-
tional Conference on Neural Networks, 1995, pp. 1942-1948.

[19] Izakian H., Ladani B. T., Zamanifar K., and Abraham A.: A Novel Particle Swarm Opti-
mization Approach for Grid Job Scheduling. Springer-Verlag Berlin Heidelberg, 2009, pp.
100-109.

[20] Izakian H., Abraham A., Snasel V.: Metaheuristic Based Scheduling Meta-Tasks in Dis-
tributed Heterogeneous Computing Systems. Sensors, 9, 2009, pp. 5339-5350.

710



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




