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A B S T R A C T

Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among
the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various
perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning
environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization
ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs.
Its success is evident from the FNN's application to numerous real-world problems. However, due to the
limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolu-
tionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain
generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization
methodologies including conventional and metaheuristic approaches. This article also tries to connect various
research directions emerged out of the FNN optimization practices, such as evolving neural network (NN),
cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc.
Additionally, it provides interesting research challenges for future research to cope-up with the present
information processing era.

1. Introduction

Back in 1943 McCulloch and Pitts (1943) proposed a computational
model inspired by the human brain, which initiated the research on
artificial neural network (ANN). ANNs are capable of learning and
recognizing and can solve a broad range of complex problems.
Feedforward neural networks (FNNs) are the special type of ANN
models. The structural representation of an FNN makes it appealing
because it allows perceiving a computational model (a function) in a
structural/network form. Moreover, it is the structure of an FNN that
makes it a universal function approximator, which has the capabilities
of approximating any continuous function (Hornik, 1991). Therefore, a
wide range of problems is solved by the FNNs, such as pattern
recognition (Jain et al., 2000), clustering and classification (Zhang,
2000), function approximation (Selmic and Lewis, 2002), control (Lam
and Leung, 2006), bioinformatics (Mitra and Hayashi, 2006), signal
processing (Niranjan and Principe, 1997), speech processing (Gorin
and Mammone, 1994), etc.

The structure of an FNN consists of several neurons (processing
units) arranged in layer-by-layer basis and the neurons in a layer have
connections (weights) from the neurons at its previous layer.

Fundamentally, an FNN optimization/learning/training is met by
searching an appropriate network structure (a function) and the
weights (the parameters of the function) (Haykin, 2009). Finding a
suitable network structure includes the determination of the appro-
priate neurons (i.e., activation functions), the number of neurons, and
the arrangements of neurons, etc. Similarly, finding the weights
indicates the optimization of a vector representing the weights of an
FNN. Therefore, learning is an essential and distinguished aspect of the
FNNs.

Numerous algorithms, techniques, and procedures were proposed
in the past for the FNNs optimization. Earlier, in FNN research, only
the gradient-based optimization techniques were the popular choices.
However, gradually because of the limitations of gradient-based
algorithms, the necessity of metaheuristic-based optimization methods
were recognized.

Metaheuristics formulate the FNN components, such as weights,
structure, nodes, etc., into an optimization problem. Metaheuristics
implement various heuristics for finding a near-optimum solution.
Additionally, a multiobjective metaheuristic deals with the multiple
objectives simultaneously. The existence of multiple objectives in the
FNNs optimization is evident since the minimization of FNN's approx-

http://dx.doi.org/10.1016/j.engappai.2017.01.013
Received 7 December 2016; Received in revised form 20 January 2017; Accepted 23 January 2017

⁎ Corresponding author.

Engineering Applications of Artificial Intelligence 60 (2017) 97–116

Available online 10 February 2017
0952-1976/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09521976
http://www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://dx.doi.org/10.1016/j.engappai.2017.01.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2017.01.013&domain=pdf


imation error is desirable at one hand, and the generalization and
model's simplification is at the other.

In a metaheuristic or multiobjective metaheuristic treatment to an
FNN, an initial population of FNNs is guided towards a final popula-
tion, where usually the best FNN is selected. However, selecting only
the best FNN from a population may not always produce a general
solution. Therefore, to achieve a general solution without any signifi-
cant additional cost, an ensemble of many candidates chosen from a
metaheuristic final population is recommended.

This article provides a comprehensive literature review to address
the various aspects of the FNN optimization, such as:

1. The importance of an FNN as a function approximator and its
preliminary concepts (Section 2), including the introduction to the
factors influencing the FNN optimization (Section 2.2) and intro-
duction to the conventional optimization algorithms (Section 2.3).

2. The role of metaheuristics and hybrid metaheuristics in FNNs
optimization (Section 3).

3. The role of multiobjective metaheuristics (Section 4) and the
ensemble methods (Section 5).

4. The current challenges and future research directions (Section 6).

2. Feedforward neural networks

The intelligence of human brain is due to its massively parallel
neurons network system. In other words, the architecture of the brain.
Similarly, a proper design of an ANN offers a significant improvement
to a learning system. The components, such as nodes, weights, and
layers are responsible for the developments of various ANN models.

A single layer perceptron (SLP) consists of an input and an output
layer, and it is the simplest form of ANN model (Rosenblatt, 1958; Jain
et al., 1996). However, SLPs are incapable of solving nonlinearly
separable patterns (Minsky and Papert, 1988). Hence, a multilayer
perceptron (MLP) was proposed, which addressed the limitations of
SLPs by including one or more hidden layers in between an input and
an output layer (Werbos, 1974). Initially, the backpropagation (BP)
algorithm was used for the MLP training (Rumelhart et al., 1986). A
trained MLP was then found capable of solving nonlinearly separable
patterns (Rumelhart et al., 1986). In fact, MLPs (in general FNNs) are
capable of addressing a large class of problem pertaining to pattern
recognition and prediction. Moreover, an FNN is considered as a
universal approximator (Hornik, 1991). Cybenko (1989) referring
to Kolmogorov's theorem1 showed that an FNN with only a single
internal hidden layer—containing a finite number of neurons with any
continuous sigmoidal nonlinear activation function—can approximate
any continuous function. Also, the FNN structure (architecture) is itself
capable enough to be a universal approximator (Hornik et al., 1989;
Hornik, 1991). Hence, several researchers praised FNN for its uni-
versal approximation ability (Kŭrková, 1992; Leshno et al., 1993;
Huang and Babri, 1998; Huang et al., 2006a).

Many other ANN models, like radial basis function (Lowe and
Broomhead, 1988) and support vector machine (Cortes and Vapnik,
1995) are a special class of three-layer FNNs. They are capable of
solving regression and classification problems using supervised learn-
ing methods. In contrast, adaptive resonance theory (Grossberg, 1987),
Kohenen's self-organizing map (Kohonen, 1982), and learning-vector-
quantization (Kohonen, 1982) are two-layer FNNs that are capable of
solving pattern recognition and data compression problems using
unsupervised learning methods.

Additionally, the ANN architecture with feedback connections, in
other words, a network where connections between the nodes may

form cycles is known as a recurrent neural network (RNN) or
feedback network model. The RNNs are good at performing sequence
recognition/reproduction or temporal association/prediction tasks.
RNNs such as Hopfield network (Hopfield, 1982) and Boltzmann
machine (Ackley et al., 1985) are good at the application for memory
storage and remembering input–output relations. Moreover, Hopfield
network was designed for solving nonlinear dynamic systems, where
the stability of a dynamic system is studied under the neurodynamic
paradigm (Hopfield, 1982).

A collection of RNN models, such as temporal RNN (Dominey,
1995), echo state RNN (Jaeger, 2001), liquid state machine
(Natschläger et al., 2002) and backpropagation de-correlation (Steil,
2004) forms a paradigm called reservoir computing, which addresses
several engineering applications including nonlinear signal processing
and control. Although some other ANN models that are capable of
doing a similar task that of the FNNs were pointed out in this Section,
the discussion in this article is; however, limited to only FNNs.

2.1. Components of FNNs

FNNs are the computational models that consist of many neurons
(node), which are connected using synaptic links (weights) and are
arranged in layer-by-layer basis. Thus, the FNNs have a specific
structural configuration (architecture) in which the nodes at a layer
have forward connections from the nodes at its previous layer
(Fig. 1(a)). A node of an FNN is capable of processing information
coming through the connection weights (Fig. 1(b)). Mathematically, the
output yi (excitation) of a node (node indicated as i) is computed as:
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where ni is the total incoming connections, zi is the input, wi is the
weight, bi is the bias, and φ(·)i is the activation function at the i-th node
to limits the amplitude of the output the node into a certain range.

Fig. 1(a) is a structural representation of an FNN, i.e., a phenotype
of a function f x w( , ), which is parameterized by a p-dimensional input
vector x x xx = 〈 , , …, 〉p1 2 and an n-dimensional real-valued weight
vector w w ww = 〈 , , …, 〉n1 2 . The function f x w( , ) is a solution of a
problem. Therefore, two tasks involved in solving a problem using an
FNN are: to discover an appropriate function f x w( , ) (i.e., the
architecture optimization) and to discover an appropriate weight vector
w (i.e., the weights optimization) using some learning algorithm.

The architecture optimization indicates the search for the appro-
priate activation functions at the nodes, the number of nodes, number
of layers, the arrangements of the nodes, etc. Therefore, several
components of an FNN optimization are: the connection weights;
the architecture (number of layers in a network, the number of nodes
at the hidden layers, the arrangement of the connections between
nodes); the nodes (activation functions at the nodes); the learning
algorithms (algorithms training parameters); and the learning
environment. However, traditionally, the only component that was
optimized was the weights of the connections by keeping other
components fixed to the initial choice.

2.2. Influencing factors in FNN optimization

2.2.1. Learning environments
An FNN is trained by supplying the training data (X Y, ) of N input–

output pairs, i.e., X x x x= ( , , …, )N1 2 and Y y y y= ( , , …, )N1 2 . Each input
x x xx = 〈 , , …, 〉i i i ip1 2 is a p-dimensional vector, and it has a correspond-

ing q-dimensional desired output vector y y yy = 〈 , , …, 〉i i i iq1 2 . For the

training data (X Y, ), an FNN produces an output Y y y y= ( , , …, )N1 2 ,
where a vector y y yy = 〈 , , …, 〉i i i iq1 2 is a q-dimensional FNNs output,
which is then compared with the desired output yi, for all i = 1 to N by

1 Kolmogorov's theorem: “All continuous functions of n variables have an exact
representation in terms of finite superpositions and compositions of a small number of
functions of one variable (Kolmogorov, 1957).”
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using some error/distance/cost function. The minimization/reduction
of the error/distance function, in an iterative manner, is referred as a
supervised learning. One very commonly known supervised learn-
ing algorithm is Delta rule or Widrow-Hoff rule (Wisrow et al., 1960;
Widrow, 1959) in which the n-dimensional weight vector w of an FNN
is optimized as:

w w w= + Δ ,t t t+1 (2)

where Δwt is weight change (an additive term) at t-th iteration. The
weight change Δwt is computed as:

η ew xΔ = ,i
t t

i
t

i
t (3)

where ηt is a learning rate, which controls the magnitude of weight
change at t-th iteration and eti is the error at t-th learning iteration
corresponding to i-th training input xi

t presented to an FNN. The error
eti at the t-th iteration may be computed as: e y y= ∑ ( − )i

t
j
q

ij
t

ij
t

=1
2, where

yij
t and yij

t are the desired output and FNN's output at t-th iteration
respectively.

Contrary to the supervised learning paradigm, there are two other
learning forms for the spacial cases of FNNs: (1) the unsupervised
learning—for the unlabeled training data (Rumelhart and Zipser,
1985), and (2) the reinforcement learning—for the training data with
insufficient input–output relations (Kaelbling et al., 1996). The focus of
this article is, however, on supervised learning paradigms only.

2.2.2. Error functions
A supervised learning, essentially, is the minimization of the

difference/distance between the desired output yi and the model's
output fy x w= ( , )i by comparing the difference/distance using a cost

function c Y Y: × ⟶f ≥0. For this propose, several cost function can be
designed. For instance, in regression problems, mean squared error is
one of the commonly used cost function, which is written as:
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where yij are the desired response and yij are the FNN's responses, and
their differences were summed over N data pairs. Some other functions
like sum of squared error, root of mean square error, mean absolute
error, correlation coefficient, etc., can be used for evaluating the FNN's
predictability (Pearce and Ferrier, 2000).

The cost function (4) or any similar squared-error-based cost
function is inconsistent for solving classification problems (Twomey
and Smith, 1995). Instead, the percentage of good classification, which
has consistent behavior, can be used (Twomey and Smith, 1995).
However, the percentage of good classification is satisfactory until no
preference was given to a particular class. Therefore, accuracy and
miss-classification rate are used as the cost functions. A detailed list of

the cost function for evaluating the classification problems is provided
by Pencina et al. (2008), Sokolova and Lapalme (2009), and
FernandezCaballero et al. (2010).

In this article, cost function mentioned for FNN optimization is
discussed in a general sense, which can be thought as the equivalent to
any other user-defined cost function. Another factor related to fitness of
an FNN is to compare the cost functions of two or more FNN models
(Baranyi et al., 1999; van der Voet, 1994). Some researchers also argue
to statistically compare the predicted outputs of two or more FNN
models to establish the differences in their performances (Diebold and
Mariano, 1995).

2.2.3. Local minima problem
Let c S: ⟶f ≥0, where S ⊂ n is nonempty and compact (for

detailed information about topological compactness, see Simovici and
Djeraba (2008)). Therefore, the following may be defined:

Definition 1. A point Sw* ∈ is called global minima if
c c Sw w w( *) ≤ ( ) for any ∈f f holds.

Definition 2. A point Sw* ∈ is called local minima if there exists
ϵ > 0, and an ϵ-neighborhood B w( *, ϵ)ϵ around w* such that
c c S Bw w w w( *) ≤ ( ) for any ∈ ∩ ( *, ϵ)f f ϵ holds.Learning algorithms
when to using the cost function (4) or any similar function for FNN
optimization has the tendency to fall in local minima (Hansen and
Salamon, 1990). Moreover, the geometrical structure (parameter
space) of a three-layer perceptron may fall to local minima and
plateaus during its optimization. It indicates that the critical point
corresponding to global minima of a smaller FNN model (model with
h − 1 hidden units) can be a local or saddle point of a larger FNNmodel
(model with h hidden units) (Fukumizu and Amari, 2000). However,
there are some ways to avoid or eliminate local minima in FNN
optimization (Wessels and Barnard, 1992; Toh, 2003):

(1) If the weights and training patterns are assigned randomly to a
three-layer FNN that contains h neurons at the hidden layer, then a
gradient-descent algorithm can avoid trapping into local minima
(Poston et al., 1991).

(2) If linearly-separable training data and pyramidal network struc-
ture are taken, then the error surface will be local minima free
(Gori and Tesi, 1992).

(3) If there are N many noncoincident input patterns to learn and
three-layered FNN with N − 1 sigmoid hidden neurons and one
dummy hidden neuron is used, then the corresponding error
surface will be local minima free.

(4) If the training algorithms can be improved as similar to as the
global descent learning algorithm proposed by Cetin et al. (1993)
to replace gradient-descent algorithms, then it can avoid local
minima.

Fig. 1. Three-layer feedforward neural network (a), where input layer has p input nodes, hidden layer has h activation functions, and output layer has q nodes.
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These four methods depend on the number of hidden neurons, the
number of training samples, the number of output neurons, and a
condition that says the number of hidden neurons should not be less
than the number of training samples. Moreover, it does not necessarily
guarantee to converge to a global minima and to set the preconditions
for the number of hidden neurons and linearly separable training
patterns are unlikely conditions for the real-world problems (Huang,
1998).

2.2.4. Generalization
The generalization is a crucial aspect of an FNN optimization,

where it is an ability to offer the general solutions rather than
performing best for the particular cases. To achieve generalization,
FNNs need to avoid both underfitting and overfitting during training,
which is associated with high statistical bias and high statistical
variance (Geman et al., 1992). Therefore, one has to address trade-
offs between bias and variance. Also, for a good generalization, the
number of training pattern should be sufficiently larger than the total
number of connections in FNN (Widrow and Lehr, 1990).

The standard methods to achieving generalization are determining
an optimum number of free parameters (i.e., equivalent to find an
optimum network architecture), early stopping of training algorithms,
adding regularization term with the cost function (Girosi et al., 1995;
Bishop, 1995), and adding noise to the training data.

In early stopping, a dataset is divided into three sets: a training set,
cross-validation set, and test set. The early stopping scheme suggests
stopping of training at the point (epoch) from which onward the cost
function value computed on cross-validation set starts to rise (Hansen
and Salamon, 1990; Amari et al., 1997; Prechelt, 1998; Yao et al.,
2007). Similarly, adding noise (jitters) into the training pattern
improves FNN's generalization ability and removing insignificant
weights from a trained FNN improves its fault tolerance ability
(Murray and Edwards, 1994). Moreover, generalization is related to
sparsity and stability of a learning algorithm (Bousquet and Elisseeff,
2002).

Now, if the approximation error of two FNN models trained on the
same training data is close/similar, then the model with simple
network structure (lower number of free parameters) should be
selected as the best model. It is because the model with lower network
complexity possesses higher generalization ability than the models with
higher network complexity (Reed et al., 1995). Moreover, the network
with lower weight magnitude possesses better generalization ability
(Reed et al., 1995).

2.3. Conventional optimization approaches

Finding a suitable algorithm for the FNNs optimization has always
been a difficult task. The FNN optimization using conventional gradient
based algorithms is viewed as an unconstrained optimization problem
(Haykin, 2009; Lippmann, 1987). The cost function cf has to be
optimized to satisfy Definition 1. Therefore, the gradient of error gt

at t-th iteration is computed as:

g
c
w

=
∂
∂

,t f
t (5)

where gt is a first-order partial derivative of the cost function cf with
respect to weight vector w. Hence, a gradient-descent approach starts
with an initial guess w0 and generates a sequence of weight vector
w w, , …1 2 such that cf reduces in each iteration. The connection weights
at iteration t are updated as:

w w w= + Δ ,t t t+1 (6)

where the weight change η gwΔ is equal to −t t t, and ηt is the learning
rate. The weights updated using (5) and (6) is known as the steepest
decent approach. Now, instead of using a first-order partial derivative,
a second-order partial derivative (∇2) of cost function cf can be

used as:

H c
c
w

= ∇ =
∂
∂

,t
f

f2
2

(7)

where Ht is Hessianmatrix at the t-th iteration (Chen and Sheu, 1994).
Hence, the weight change wΔ t using second–order Taylor's series
expansion of cost function cf around point Δwt=Ht-1gt is computed as:

H gwΔ = − ,t t t−1 (8)

where Ht−1 is the inverse of Hessian matrix Ht and the weight change
wΔ t is known as the Newton method or Newton update (Haykin et al.,

2009). In the past, several algorithms were proposed using (5) and (8).
Some of them are summarized as follows:

Backpropagation (BP) is a first-order gradient-descent algo-
rithm for the FNNs optimization (Werbos, 1974; Rumelhart et al.,
1986). In BP, the error computed at the output layer is propagated
backward to the hidden layers. BP algorithm has two phases of
computation: forward computation and backward computation,
where at t-th iteration, the weight change wΔ t for l-th layer is computed
as:

α η gw w yΔ = + ,l
t t

l
t t t

l
−1

−1 (9)

where y is inputs/excitation from previous layer l − 1, ηt is learning
rate and αt is momentum factor.

The choice of learning rate ηt and momentum factor αt are critical
to gradient-descent technique. The momentum factor αt allows BP
training to be biased with previous iteration weights that help
convergence rate to be faster. BP is sensitive to these parameters
(Rumelhart et al., 1986). If the learning rate is too small, learning will
become slow, and if the learning rate is too large, learning will be zigzag
and algorithm may not converge to required degree of satisfaction.
Additionally, a high momentum factor leads to a high risk of over-
shooting minima and a low momentum factor may avoid local minima,
but learning will be slow. The classical BP algorithm is slow and has a
tendency to fall in local minima (Gori and Tesi, 1992).

Since the basic version of BP is sensitivity towards learning rate and
momentum factor (Rumelhart et al., 1986), several improvements were
suggested by researchers: (1) a fast BP algorithm, called Quickpro was
proposed by Fahlman and Lebiere (1990), Fahlman (1988); (2) a delta-
bar technique and an acceleration technique was suggested for tuning
BP learning rate η by Jacobs (1988) and Silva and Almeida (1990)
respectively; and (3) a variant of BP, called resilient propagator
(Rprop) was proposed by Riedmiller and Braun (1993).

In the Rprop, if the gradient direction in iteration n remains
unchanged from its previous iteration t − 1, then the weight change will
occur in larger magnitude, else in smaller. In simple words, if gradient
sign remains unchanged from previous iterations, the magnitude of
learning rate η will be large, otherwise small. The proposed Rprop
improves determinism of convergence to global minima (Riedmiller
and Braun, 1993). However, it is not faster than the Quickpro, but still
faster than BP (Schiffmann et al., 1994).

Contrary to BP, a second-order minimization method, called
conjugate gradient (CG) can be used for weights optimization
(Hestenes and Stiefel, 1952; Barnard and Cole, 1989; Charalambous,
1992). The CG does not proceed down with a gradient; instead, it
moves in the direction that is conjugate to the direction of the previous
step. In other words, the gradient corresponding to the current step
stays perpendicular to the direction of all the previous steps, and each
step is at least as good as its previous step. Such series of steps are non-
interfering. Hence, the minimization performed in one step will not be
undone by any further steps. Several variants of the CG were proposed
in the past (Dai and Yuan, 1999).

Similar to the CG, many other variants of derivative-based conven-
tional methods are used for weights optimization: Quasi-Newton
(Chen and Sheu, 1994), Gauss-Newton (Bertsekas, 1999), or
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Levenberg-Marquardt (Marquardt, 1963). Quasi-Newton uses a sec-
ond-order partial derivative (7) of error (4), and it computes its weight
search direction by using Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method (Fletcher, 1987). In Gauss-Newton method, the FNNs optimi-
zation is framed as a nonlinear least square optimization problem,
which suggests to using the sum of squared error (4) (Marquardt,
1963). Many researchers suggested that the Levenberg-Marquardt
(LM) method outperforms BP, CG, and Quasi-Newton methods
(Hagan and Menhaj, 1994; Lera and Pinzolas, 2002). Several other
methods were proposed for the FNNs optimization are based on
Kalman-filter (Haykin et al., 2001; Sum et al., 1999) and recursive
least squares method (Azimi-Sadjadi and Liou, 1992).

2.4. Comments on conventional approaches

The gradient-descent based conventional algorithms operate on a
single solution (a weight vector) during the optimization. Thus, these
algorithms are computationally faster than the algorithms that use two
or more solution vectors during the optimization and select the best
solution vector at the end of optimization iterations. Moreover, the
gradient-decent methods such as BP (Rumelhart et al., 1986), Online
BFGS (Schraudolph et al., 2007) can be applied for the stochastic as
well as batch mode training of the FNNs.

The basic advantages of the stochastic/online training of an FNN
are its ability to address redundancy in training pattern, the inclusion
of training data that are currently not in training set (i.e., the possibility
of dynamic learning), and faster training than that of batch mode
(Wilson and Martinez, 2003). Whereas, most of the other second-order
gradient-descent methods and metaheuristic algorithms can only use
batch mode training. However, a batch mode (offline) training of an
FNN can at least guarantee a local minima under a simple condition
compared to a stochastic/online training, and for a larger dataset,
batch mode training can be faster than stochastic training (Nakama,
2009).

On the contrary to the advantages, the conventional methods have
several limitations. For example, they have the tendency to fall in local
minima, and they are only used for optimizing the FNN weights.
Additionally, the gradient-descent algorithms depend on the error
function, e.g., mean square error or sum of squared error. For instance,
the least square methods like the Gauss-Newton and LM works only if
the cost function is the sum of squared error. The Newton method has
to compute a Hessian matrix (7), which has to be positive definite and
computing the Hessian matrix (7) can be hard and expensive.
Similarly, the Quasi-Newton and CG methods need to use a line-search
method that sometimes can be expensive.

Moreover, the FNN generalization, as mentioned in Section 2.2.4,
needs the reduction in the number of weights (less complex network
architecture). Hence, the application of conventional algorithms is
limited compared to the metaheuristic algorithms such as the genetic
algorithm (GA) that can be directly applied to an FNN for its automatic
structure determination and complexity reduction (Holland, 1975;
Goldberg and Holland, 1988). Similarly, a metaheuristic algorithm
can formulate an FNN such that the insignificant weights of the
network can be eliminated to improve the FNN generalization ability.
Moreover, metaheuristic algorithms can evolve an FNN as a whole by
optimizing its components simultaneously.

3. Metaheuristic approaches

So far, only the gradient-descent based algorithms were discussed,
which are local search algorithms. They are good at exploiting the
obtained solutions to find new solutions. However, to find a global
optimum solution, any optimization algorithm must use two techni-
ques: (1) exploration—to search new and unknown areas in a search
space and (2) exploitation—to take advantage of the already discovered
solution (March, 1991). The exploration and exploitation are two

contradictory strategies and a good search algorithm must find a
trade-off between these two. Metaheuristic is the procedure that
implements nature-inspired heuristics to combine these two strategies
(Osman and Laporte, 1996). Hence, metaheuristic approaches are
alternative to the conventional approaches for optimizing the FNNs.

Unlike the conventional methods, which require the objective
function to be continuous and differential, the metaheuristic algo-
rithms have the ability to address complex, nonlinear, and non-
differentiable problems. However, the optimization algorithms are
often biased towards a specific class of problems, that is, “there is no
such universal optimizer which may solve all class of problem,” which
is evident from no free lunch theorem (Wolpert and Macready, 1997).

Wolpert and Macready (1997) introduced no free lunch (NFL)
theorem to answer the question, “whether a general purpose optimiza-
tion algorithm exists.” Moreover, Wolpert (1996) introduced NFL for
optimization algorithm to answer the question, “How does the set of
problems F ⊂1 for which algorithm a1 performs better than algo-
rithm a2 compares to the set F ⊂2 for which the reverse is true.”
Here, is space of all possible problems. To answer this question,
Wolpert proposed NFL theorem, which says that “the average perfor-
mance of any pair of algorithms across all possible problems is
identical” (Wolpert and Macready, 1997).

Therefore, a straightforward interpretation of NFL is as follows. “A
general purpose universal optimization strategy is impossible, and the
only way one strategy can outperform another if it is specialized to the
structure of the specific problem under consideration” (Ho and Pepyne,
2002). Schumacher et al. (2001) argue that the NFL theorem (Wolpert
and Macready, 1997) holds only for the set of problems which are
closed under permutation (c.u.p). Therefore, indeed the performance of
one algorithm can be improved over another for the problems that are
not c.u.p and most of the real-world problems are not c.u.p (Igel and
Toussaint, 2003). Such is the reason why in the past researchers were
inclined to create and improvise algorithms for optimizing the FNNs.

3.1. Metaheuristic algorithms

Since a large variety of metaheuristic algorithms are available, it is
difficult to classify metaheuristic algorithms precisely into different
classes. Though, intuitively, three basic categorize can be done:

3.1.1. Single solution based algorithms
A single solution based metaheuristic algorithm operates on a

single solution (candidate) and applies some heuristic inspired by the
nature or some other phenomena on the current solution. For example,
algorithms like simulated annealing (SA) (Kirkpatrick et al., 1983),
tabu search (TS) (Glover, 1989), variable neighborhood search (VNS)
(Mladenović and Hansen, 1997), greedy randomized adaptive search
(GRAP) (Feo and Resende, 1995), etc., improves a single solution by
searching around its neighborhood and continue to improve the
solution until a satisfactory solution is obtained. For instance, the
heuristics of some algorithms are as follows:

SA is a probabilistic approach that imitates the cooling strategy
(annealing process) of a metallurgy industry. It uses Monte Carlo
method (Metropolis et al., 1953) to determine the acceptance prob-
ability of a newly generated solution in the neighborhood of the current
solution. Hence, for a given search space, SA should guide a solution
towards a global optimal solution (Kirkpatrick et al., 1983; Černỳ,
1985). Similarly, TS is inspired by the human behavior of tabooing
objects (Glover, 1989). In other words, TS discourages (tabu) the
acceptance of the solutions that are already explored in the past.
Hence, it improves upon SA by introducing some additional restriction
on the acceptance of the new solutions.

Since a single solution based algorithm exploits the current solu-
tion, it also is known as the local search algorithm. The focus of this
article is to illustrate the application of the metaheuristic algorithms for
the FNNs optimization. Hence, for the detailed description of the
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mentioned algorithms, the readers may explore the respective refer-
ences.

3.1.2. Population based algorithms
Population based algorithms operate on the multiple solutions

(candidates) and apply the heuristics inspired by nature, biological
evolution, biology, or some other forms. In contrast to the single
solution based algorithms, the population based algorithms have a high
exploration (global search) ability. The following are the population
based algorithms:

Evolutionary algorithms (EA). Genetic algorithms (GA) (Holland,
1975; Goldberg and Holland, 1988), evolutionary programming (EP)
(Fogel, 1998), evolutionary strategy (ES) (Schwefel, 1987), genetic
programming (GP) (Koza et al., 1999), differential evolution (Storn and
Price, 1997), etc., are the algorithms inspired by the dynamics of
natural selection and use the operators, such as selection, crossover,
and mutation to find a near-optimal solution (Goldberg and Holland,
1988). EA framework offers an exploration of a vast search space and
guarantees to find a near-optimal solution. Since EAs do not depend on
gradient information, they solve a large range of complex, nonlinear,
nondifferentiable, multimodal optimization problems. Also, EAs give a
wider scope in the FNN optimization since EAs can optimize both
discreet and continuous optimization problem, and the FNN compo-
nents can be formulated into both ways.

The differences between EAs can be briefly stated as follows: GA
uses genetic operators, such as selection, crossover, and mutation to
search optimum genetic vector from a search space (Goldberg and
Holland, 1988); whereas, only the mutation operator are used in ES to
evolve a real vector solution (Schwefel, 1987). On the other hand, GP
searches an optimum program structure from a topological search
space of computer programs (Koza et al., 1999) and EP are used for
evolving parameters of a computer program whose structure is kept
fixed (Fogel, 1998).

Swarm intelligence (SI). SI algorithms are inspired by the collective
and self-organized behavior of the swarm (insects, birds, fish, etc.).
Particle swarm algorithm (PSO) (Eberhart and Kennedy, 1995), ant
colony optimization (ACO) (Dorigo et al., 1996), artificial bee colony
(ABC) (Karaboga, 2005), bacterial foraging optimization (BFO)
(Passino, 2002), etc., are some widely used SI algorithms. The basic
principle of SI algorithms is as follows. First, a swarm (collection of
solutions) are randomly generated. Then, the heuristic inspired by the
swarm behavior modifies the current solution. For example, in PSO,
ACO, ABC, and BFO, the heuristics are inspired by the foraging
behavior of birds, ants, bees, and bacteria respectively. In these
algorithms, an FNN component is formulated as a solution for the
optimization.

In PSO, a swarm, as a whole, is like a flock of birds (particles, which
are the weight vectors) that collectively foraging (explore search space)
for food (best weight vector) and is likely to move close to an optimum
food-source (Eberhart and Kennedy, 1995; Kennedy et al., 2001).
Moreover, each particle bears two properties: location and velocity. The
location of a particle is a solution vector (weight vector w), and velocity
η is a vector equal to the size of the location vector. Each particle
determines its movement using knowledge of its best locations, global
best location, and random perturbations (Eberhart and Kennedy, 1995;
Shi and Eberhart, 1998).

In ACO, the artificial ants explore the area around their nest
(colony) for searching a food source. ACO takes advantage of ants
ability to choose the shortest path to a food source by communicating
among each other's using a pheromone secretion (Deneubourg et al.,
1990). This behavior of ants led to the development of ACO algorithm
(Dorigo et al., 1996).

Similarly, in ABC, three kinds of honey bees, such as employed bee,
onlooker bee, and scout bee are responsible for searching food source
(Karaboga, 2005). Each employed bee memorizes a food source, i.e., a
solution (weight vector). Then, each onlooker bee examines the nectar

amount (fitness of solution) of a food source memorized by the
employed bees and depending on nectar amount; they send scout bees
for searching new food source. Hence, they iteratively construct the
solution. The readers are encouraged to explore the detail description
the algorithms in their respective references.

Other metaheuristics. The population based metaheuristic algo-
rithms metaphor is exploited to device several algorithms. There are
algorithms inspired by the behavior of animals, birds, and insects, such
as gray wolf optimization (GWO) (Mirjalili et al., 2014), flower
pollination (FP) (Yang, 2012), cuckoo search (CS) (Yang and Deb,
2009), firefly (FF) (Yang, 2010), etc.

Similarly, there are algorithms inspired by some phenomenon
observed in the physics and chemistry, such as harmony search (HS)
(Geem et al., 2001), central force optimization (CFO) (Formato, 2007),
gravitational search optimization (GSO) (Rashedi et al., 2009), etc. A
detailed list and classification of metaheuristic algorithms are provided
by Fister et al. (2013).

The growing number of metaheuristic algorithms has drawn
researchers to examine the metaphor, the novelty, and the significant
differences among the metaheuristic algorithms (Weyland, 2010;
Sörensen, 2015). Sörensen (2015) provided an insight of the meta-
heuristic developed over the time, starting from SA to TS, EA, ACO, HS,
etc., where the author claimed that most of the metaheuristic are
similar in nature and do not provide a groundbreaking method in
optimization. Despite the criticisms, the author acknowledged the
quality of metaheuristic research has been produced and can be
produced.

3.1.3. Hybrid and memetic algorithms
An effective combination of various metaheuristic algorithms may

offer a better solution than that of a single algorithm. A paradigm of
hybrid algorithms, called memetic algorithm gave a methodological
concept for combining two or more metaheuristics (global and local) to
explore a search space efficiently and to find a global optimal solution
(Moscato, 1989).

The conventional algorithms have the local minima problem
because they lack global search ability, but they are fast and good in
local search. On the other hand, the metaheuristics are good in global
search, but they suffer premature convergence (Leung et al., 1997;
Trelea, 2003). Therefore, a combination of these two may offer a better
solution in FNN optimization than that of using any one of them alone
(Fig. 2). To reach a global optimum, a hybrid strategy can be used.
Fig. 2 shows an impact of hybridization of metaheuristics on the FNNs
optimization. The hybrid algorithms can be categorized in two para-
digms:

(1) The combination of conventional and metaheuristic algorithms—to
take advantage of local search and global search algorithms.

Fig. 2. Metaheuristic may be used for finding initial weights WI2 and conventional

algorithms may be for finding global optima P2 and vice versa (Yao, 1993).
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(2) The combination of two or more metaheuristic algorithms—to
make use of different heuristics or a combined influence of two or
more heuristics of global search algorithms.

Under the definition of memetic algorithms, researchers combine
EAs with conventional algorithms (Brownlee, 2011). For example, the
effectiveness of global (GA) and local search (BP) combination is
explained by Yin et al. (2011) and Yaghini et al. (2013). Similarly, a
hybrid PSO and BP algorithms for optimizing FNN were found useful
in obtaining better approximation than using one of them alone (Zhang
et al., 2007a).

A convergence scenario similar to Fig. 2 was illustrated in Ozturk
and Karaboga (2011), where ABC was applied for searching initial
weights and LM was applied for optimizing the already discovered
weights. An example of effectively combining two metaheuristic GA
and PSO is illustrated by Juang (2004), where both GA and PSO
optimized the same population. A detailed description of the hybrid
metaheuristic algorithms for the FNN optimization is described in the
following Section.

3.2. Metaheuristic formulation of the FNN components

Metaheuristics are stochastic/non-deterministic algorithms. Hence,
they do not guarantee a global optimal solution, but they can offer a
near-optimal (satisfactory) solution. Moreover, metaheuristics effi-
ciently solve a wide range of complex continuous optimization pro-
blems; especially when the problems have incomplete and imprecise
information.

The basic form of FNN optimization is the act of searching its
weights (free parameters of FNN) such that the cost function (4) or
similar function can be minimized. However, the goodness (perfor-
mance) of FNN cost function depends not only on finding optimum
weights, but finding the optimum architecture, activation function,
parameter setting of learning algorithm, and training environment are
equally important. To apply metaheuristic algorithms for optimizing an
FNN, its components (phenotype) need to be formulated into a vector
(genotype) form.

Usually, the FNN components, such as weights, architecture,
activation function, learning rule, etc., are considered arbitrarily.
Then, a learning algorithm is applied to search weights while the other
components are kept fixed to their initial setting. The metaheuristics,
on the other hand, allow us to optimize each component simulta-
neously or a combination of components efficiently (Fig. 3).

The Venn diagram in Fig. 3 illustrates the spectrum of FNN
components optimization: weights, architecture, activation function,
and learning rule's parameters. In Fig. 3, area “a1” indicates the

optimization of weights; area “a2” indicates the optimization of weights
and architecture; area “a3” indicates the optimization of weights,
architecture, and activation function; and all other possible combina-
tions. Examining Fig. 3, one can say that the strength and complexity of
optimization increases from area denoted “a1” to “a8,” where “a1” is
the simplest approach and “a8” is the most sophisticated approach.

Each FNN component can be separately optimized on a one-by-one
basis. Therefore, firstly, the weights can be optimized by keeping a fixed
architecture; secondly, the architecture can be optimized keeping
weights fixed; thirdly, the activation function can be optimized keeping
architecture and/or weights fixed; and so on. Another way is to
optimize all or a combination of FNN components simultaneously.
Therefore, weights and architecture can be optimized, simultaneously;
or weights and activation functions, simultaneously; or weights,
architecture, and activation functions simultaneously; and so on. In
the simultaneous optimization of all or a combination of components, a
vectored representation of all components, or a combination of
components can be optimized respectively. Once a vectored represen-
tation (genotype) is designed, then one of the available metaheuristic
algorithms in the literature can be applied to optimize the designed
vector to obtained an optimum FNN.

Now, there are single-solution based and population based meta-
heuristics (Boussaid et al., 2013). In a single-solution based metaheur-
istic algorithm, a genotype w w ww = 〈 , , …, 〉n1 2 is used. Whereas, in a
population-based metaheuristic algorithm, a collection of many geno-
types are used. In other words, a population matrix
W w w w= ( , , …, )m1 2 of m weight vectors is used.

Yao and Liu (1998a) identified evolution at various components of
FNN that fall into the spectrum of metaheuristic design of FNN shown
in Fig. 3. This Section will describe how researchers applied meta-
heuristics for evolving FNN. The evolution in FNN components is
described here one-by-one, as follows. Here, the word optimization,
adaptation, and evolution are used in the similar context.

3.2.1. Weight optimization
FNN weight optimization is the most common and widely studied

approach, in which the weights are mapped onto an n-dimensional
weight vectorw, where n is the total number of weights in a network. The
vector w is a genotype representation of a phenotype (FNN structure),
where the weight w ∈ n. The weights wi, an element of vector w, may
be encoded in the following ways: by assigning a real value, l-bits binary
coding, l-bits gray coding, IEEE floating point coding, etc. Fig. 4 is an
example of phenotype to genotype mapping, where a phenotype shown in
Fig. 4(a) that has the connectivity matrix c as per Fig. 4(b) is encoded into
three different weight vectors shown in Fig. 4(c).

FNN weights optimization using metaheuristic is practiced from
early 80's when even the term metaheuristic was not used. Engel's
(1988) work on FNN weight vector optimization using SA was the first
evidence of metaheuristic application. To optimize weight vector using
SA, first, the phenotype was mapped onto a real-valued weight vector
(Fig. 4(c)), and to compute fitness of the FNN, a reverse mapping from
genotype (weight vector w) to phenotype (FNN) was used. Such
process was continued until a satisfactory solution was found. SA
based FNN weight optimization was found to be performing better in
comparison to conventional approaches (Shang and Wah, 1996; Sexton
et al., 1999; Sarkar and Modak, 2003).

Similar to Engel's (1988) approach of phenotype to genotype
mapping and vice versa, Beyer and Ogier (1991) performed the FNN
weights optimization using TS. Battiti and Tecchiolli (1995) used an
improvised TS, called reactive tabu search for optimizing weights.
Several studies show that TS when used for optimizing FNN weights,
outperformed BP and SA algorithm (Sexton et al., 1998a; Ye et al.,
2007). However, SA and TS are single solution based algorithms, which
has a limited scope of exploring search space to obtain a global optimal
solution. In contrast, the EAs, SI, or other bio-inspired metaheuristics
are population-based algorithms that operate on multiple agents toFig. 3. Spectrum of metaheuristic design of FNN.
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explore a search space. Hence, they have a better exploration ability
than SA, TS, BP, CG, and other single solution based algorithms
(Goldberg and Holland, 1988; Kennedy et al., 2001).

For optimizing the FNN weights, EAs use two types of vector
representation: real-valued and binary valued vector representation.
In Fig. 4(c), following weight vector representation are illustrated: (1)
real-valued coded chromosome, (2) binary coded chromosome, and (3)
binary gray-coded chromosome.

Goldberg and Holland (1988) gave the idea of FNN training using
GA. However, Whitley (1989) were the first to propose “GENITOR,” a
GA based FNN training procedure that used binary-coded chromosome
(Fig. 4(c)) for optimizing the weights. Many others followed the idea of
GENITOR with some additional improvements such as connectivity
optimization and reduced search space introduction (Whitley et al.,
1990; Srinivas, and Patnaik, 1991). On the other hand, Belew et al.
(1990) used a binary gray coding (Fig. 4(c)) scheme for optimizing the
weights, where at first, GA was used for finding initial weights that were
further optimized by using BP and vice versa.

The binary bit-string representation of the weights leads to a
precision problem, i.e., how many bits would be sufficient for
representing weights and what would be the total length of a
chromosome. Moreover, the binary representation is computationally
expensive because, in each training iteration, a binary to real-valued
mapping and vice versa is required. Hence, it is advantageous to use
the real-coded chromosome (Fig. 4(c)) directly (Montana and Davis,
1989; Fogel et al., 1990; Sietsma and Dow, 1991; Menczer and Parisi,
1992; Irani and Nasimi, 2011).

Traditional EA operators are applied on the binary chromosome.
Thus, operators, such as bias-mutation, unbiased-mutation, node-
mutation, weight-crossover, and gradient-operator, etc., were defined,
for operating on the real-valued chromosome (Montana and Davis,
1989). On the other hand, a matrix-based representation of weights,
where a column-wise and a row-wise crossover operators were also
defined (Kim et al., 2005). The GA-based real coded weights optimiza-
tion outperforms BP and its variants for solving real-world applications
(Kitano, 1990b; Sexton et al., 1998b; Ding et al., 2011; Tong and
Mintram, 2010). Moreover, an evolutionary inspired algorithm, called
differential evolution (DE) (Storn and Price, 1997; Das and Suganthan,
2011) that imitates mutation and crossover operator to solve complex
continuous optimization problems was found to be performing effi-
ciently for real-valued weight vector optimization (Nolfi et al., 1994;
Ilonen et al., 2003; Slowik, 2011).

Similar to DE, swarm-based or bio-inspired based meta-
heuristics directly apply heuristics inspired by nature on a real-valued
vector. Hence, they are advantageous in comparison to an EA-based
algorithm that needs to simulated mutation and crossover operators for
real-valued weight vector (Kennedy et al., 2001). It was found that
PSO guides a population of the FNN weight vectors towards an
optimum population (Ismail and Engelbrecht, 2000; Zhang et al.,
2007b). Hence, many researchers resorted to working on swarm based
metaheuristics for the FNN optimization.

A cooperative PSO, which suggests to splitting a solution vector
into n parts, where each part optimized by a swarm of m particles (Van

den Bergh and Engelbrecht, 2001, 2004). Thus, an n m× combinations
are constructs an n-dimensional composite vector, where each m
swarm contributes to the fitness of a solution. Such cooperation
between swarms led to a better performance than that of the basic
version of PSO. Similarly, a multi-phase PSO was proposed in which
particle position was updated only when improvement in location was
found; otherwise, the location was copied as-it-is into the next
generation (Al-kazemi and Mohan, 2002).

A cultural cooperative particle swarm optimization (CCPSO)
approach in which a collection of multiple swarms that interact by
exchanging information was proposed by Lin et al. (2009). The CCPSO
performed better than BP and GA when it was applied for optimizing a
fuzzy neural network. Similarly, a hierarchical particle swarm optimi-
zation was used to design a beta basis function neural network (Dhahri
et al., 2013).

Apart from PSO, there are numerous metaheuristic algorithms
among which, some significant metaheuristics were discussed here that
were applied for FNN optimization. The continuous version of ACO
(Socha and Dorigo, 2008) was efficiently applied to optimize the FNN
weight vector (Socha and Blum, 2007). ACO trained FNN was found
efficient in solving real-life applications, such as scheduling, prediction,
image recognition, etc. (Irani and Nasimi, 2012; Sharma et al., 2013).

ABC was efficiently applied on weight vector for optimizing the
FNNs (Karaboga et al., 2007; Garro et al., 2011; Sarangi et al., 2014).
Similarly, considering the efficiency of HS algorithm—that has a slow
convergence rate, but guarantees a near-optimum solution (Geem
et al., 2001)—many researchers applied HS for optimizing weight
vector of the FNNs (Kattan et al., 2010; Kulluk et al., 2012).
Moreover, the efficiency of HS comes from using m many harmonies
(weight vectors), and iteratively improvising each harmony by comput-
ing new harmony (new solution vectors) using heuristic inspired by
music pitch modification (Geem et al., 2001; Mahdavi et al., 2007; Pan
et al., 2010).

In the past, many other forms of metaheuristics were also used
for optimizing the FNNs. For example, the application of FF, CS, GSO,
BFO, and CFO algorithms for the FNN weights optimization is
available in Horng et al. (2012), Vázquez (2011), Ghalambaz et al.
(2011), Ulagammai et al. (2007), Zhang et al. (2010), Green et al.
(2012) respectively.

Moreover, a comparative study showed that FF algorithm per-
formed better than that of BP, GA, and ABC for weight vector
optimization (Nandy et al., 2012). Alba and Marti (2006) provided a
detailed study that explains the application of the local and global
metaheuristic algorithm for FNN optimization. For example, local
search algorithms like SA, TS, GRAP, VNS (Mladenović and Hansen,
1997), estimations of distribution algorithm (Larrañaga and Lozano,
2002) and global search algorithms like GA, ACO, and memetic
algorithm, were examined thoroughly by Alba and Marti (2006).
Additionally, many researchers studied the performance of metaheur-
istic algorithms for the training of the FNN and reported that the
metaheuristic approaches outperform all the conventional methods by
a huge margin (Carvalho et al., 2011; Kordík et al., 2010; Khan and
Sahai, 2012).

Fig. 4. Mapping of phenotype to genotype. (a) Phenotype of a three-layer FNN. (b) Adjacency matrix. (c) Weights encoding: (i) real value; (ii) 4-bits binary; (iii) 4-bits gray encoding.

V.K. Ojha et al. Engineering Applications of Artificial Intelligence 60 (2017) 97–116

104



The memetic algorithm supports the hybridization of two or
more global metaheuristics for the FNN optimization, which is evident
from the following examples. A hybrid GA and PSO approach for
optimizing the FNN were proposed by Juang (2004), where both GA
and PSO were suggested to run over the same population—randomly
generated population W of m individuals (the same individual was
treated as a chromosome in GA and a particle in PSO). In each
generation of GA and PSO, the fitness of each individual was computed.
Then, the best performing individuals (top-half) were marked as elites.
The elite individuals were copied to next generation and half of the
copied elites were optimized using PSO and the remaining half using
GA through tournament selection and crossover operation.

Similarly, a PSO and SA based hybrid algorithm for optimizing
FNN were proposed by Da and Xiurun (2005), where, in each iteration,
each PSO particle was governed by SA metropolis criteria (Metropolis
et al., 1953) that determined global best particle for PSO algorithm.
There are several other hybrid algorithm examples available in the
literature: a hybrid PSO and GA (Ali Ahmadi et al., 2013); hybrid GA
and DE (Donate et al., 2013); hybrid PSO and GSO (Mirjalili et al.,
2012); and hybrid PSO and optimal foraging theory (Niu et al., 2007).

3.2.2. Architecture plus weight optimization
The basic architecture optimization approach is a cascade correla-

tion learning, which iteratively adds nodes to hidden layer to construct
optimum architecture (Fahlman and Lebiere, 1990). Moreover, a
constructive (add node iteratively) and destructive (prune nodes
iteratively) method (Frean, 1990). However, the constructive and the
destructive methods for optimizing architecture are no different from
the manual trial-and-error method. Therefore, genetic representation
of the FNN architecture as mentioned in Figs. 5(a)–(c) can be used for
architecture optimization, which is equivalent to searching optimum
architecture from a compact space of FNN topology (Maniezzo, 1994;
Xi-Zhao et al., 2013).

Let us discuss the genetic representation of architecture in detail. A
direct encoding scheme (Fig. 5(a)) was proposed by Whitley and
Hanson (1989) and Schaffer et al. (1990), where the authors used an
adjacency matrix (Fig. 4(b)) to represent connections between nodes,
where between any two nodes i and j, a presence of connection is
indicated by “1”, and absence of connection is indicated by "0". Hence,
they were able to encode complete structural information into a
chromosome. However, it is disadvantageous because chromosome
length increases with network size. Therefore, if only the network's
structural information can be encoded into genotype, then, it will avoid
chromosome length problem (Harp et al., 1989). Additionally, the
encoded network structural information can be accessed using rule-
based recursive equation (Mjolsness et al., 1989). Moreover, the
represented parametric/structural information into the chromosome
can indirectly provide access to the rest of the structural details from a
predefined archive (parametric information) (Kitano, 1990a).

The indirect encoding scheme reduces chromosome length,
where parametric information, such as the number of hidden layers,

the number of nodes at hidden layers, the number of connection, etc.,
makes an archive s. The production rule (Fig. 5(b)) allow us to get
access to complete structural information (Fig. 5(c)). Hence, a rule
based encoding scheme allows a better FNN architecture optimization
than a direct encoding scheme (Siddiqi and Lucas, 1998).

Unlike the weight optimization that has only limited ways of genetic
representation, the FNN architecture optimization is an interesting
area of research as there are various ways to represent architecture into
genotype. It is evident from a fractal configured FNN representation
proposed by Merrill and Port (1991), where authors defined each node
using parameters, namely, edge code, input coefficient, and output
coefficient. Similarly, Andersen and Tsoi (1993) applied GA to evolve
each layer separately and Tayefeh Mahmoudi et al. (2013) proposed a
grammar encoding and colonial competitive algorithm.

Another approach to the genetic representation of architecture is to
encode weights w (real vector: Fig. 4(c)) and architecture vector

a aa = 〈 , … 〉m1 (binary vector as Fig. 5(a)) into a combined genotype.
Hence, a single solution vector s w w a a= 〈 , …, , , …, 〉n m1 1 is obtained
(Ludermir et al., 2006), which can be optimized by using metaheur-
istics.

Many researchers improvised the algorithms itself to optimize
architecture. Such examples are as follows: Carvalho and Ludermir
(2007) devised a PSO-PSO method, in which a PSO (inner PSO block)
was applied for optimizing weights that were nested under another
PSO block (outer PSO block), that was applied for optimizing the
architecture of FNN by adding or deleting hidden node. Similarly, Tsai
et al. (2004, 2006) proposed a hybrid Taguchi-genetic algorithm for
optimizing the FNN architecture and weights, where authors used a
genetic representation of the weights, but they select structure using
constructive method (by adding hidden nodes one-by-one). A multi-
dimensional PSO approach was proposed by Kiranyaz et al. (2009) for
constructing FNN automatically by using an architectural (topological)
space. Moreover, the individuals in the swarm population were
designed in such a way that it optimized both position (weights) and
dimension (architecture) of an individual in each iteration. Thus,
optimized FNN weights and architecture simultaneously.

So far, only genetic representation was discussed for evolving
architecture. However, GP can optimize a phenotype itself, where
genetic representation is not required (Khan et al., 2013). Therefore,
EP and GP can be directly applied to a population FNN architecture to
evolve an optimum FNN architecture (Fogel et al., 1990; Koza and
Rice, 1991; Tsoulos et al., 2008).

The design of the FNN architecture is responsible for processing
high-dimensional data. Hence, deep learning paradigm offers study
massive and deep structure of the neural network that can process
complex problems related to speech processing, natural language
processing, signal processing, etc., (Schmidhuber, 2015; LeCun et al.,
2015). Such a variant of the FNN is convolutional neural networks
(ConvNets), which is designed to process data from the multiple arrays
form such as a color image composed of three 2D arrays (Schmidhuber,
2015; LeCun et al., 2015). The ConvNets has a three-dimensional

Fig. 5. Mapping of phenotype (Fig. 4 to genotype (for architecture). (a) Direct encoding to a vector of connectivity matrix (Fig. 4(b)): (i) upper right triangle; (ii) complete connectivity.
(b) Indirect encoding schemes for architecture (Fig. 4(a)), where S is a start symbol, A, B, C, and D are the variables, and a, c, i, and u is the terminal. (c) Complete connectivity derived
from rules operation shown in Fig. 5.
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arrangement of neural nodes. Hence, it efficiently receives 3D inputs
and processes them to produce 3D outputs (Maturana and Scherer,
2015).

In contrast to deep network paradigm, an extreme learning
machine (ELM) based hierarchical learning framework (H-ELM)
proposed by Tang et al. (2016) claimed a faster learning than deep
learning by ELM (Huang, 2014) based auto-encoding. The proposed H-
ELM framework worked in two phases: unsupervised hierarchical
feature representation and (2) supervised feature classification (Tang
et al., 2016).

3.2.3. Input layer optimization
Input layer optimization resembles feature reduction, which is

traditionally performed separately by dimensionality reduction meth-
ods (Fodor, 2002). However, reducing input dimension by optimizing
input layer, i.e., by feeding a subset of input features at the input layer
than by feeding the whole set of input features enhances FNN's
performance (Fontanari and Meir, 1991; Guo and Uhrig, 1992).
Therefore, FNN has a functional dependency on the problem at hand.

EAs select a subset of input features for which FNN perform better
than that of the complete feature set (Fontanari and Meir, 1991). For
this purpose, a genetic representation of input features is required in
which the available features are placed on a genetic strip, and the
presence of a feature is marked as “1” and the absence of a feature is
marked as “0.” Such mechanism of input layer optimization was found
advantageous in improving NN performance (Venkadesh et al., 2013).

Moreover, binary PSO (Kennedy and Eberhart, 1997), which is a
discrete optimizationmethod was employed for selecting the input
features which were binary coded (Lin et al., 2008; Vieira et al., 2013).
Lin et al. (2008) proposed a modified version of binary PSO, where EA
like mutation operator was applied to mutated binary vectors.
Similarly, ACO, which traditional solves discrete optimization problem
was applied to select input features and training of an FNN in a hybrid
manner (Sivagaminathan and Ramakrishnan, 2007).

Input layer optimization which is related to input feature reduction
can also be thought as training data optimization. Training data
optimization is helpful, particularly when data is insufficient or noisy.
Zhang and Veenker (1991) resorted to performing an adaptive selec-
tion of input examples by employing genetic selection, where two-point
and one-point crossover operations created new example patterns. For
the crossover operations, the parent's examples were drawn from the
original input set. Also, mutation operators were also applied for
generating new child example. Hence, the efficiency of FNN was
improved when trained over the modified new examples.

Additionally, Cho and Cha (1996) suggested an input example
generation methods, in which the input space was divided into many

regions, and k-nearest neighbor method was applied to determine/
generate a new virtual example, mainly for the sparse region of the
input space. Hence, both the above methods of input example genera-
tion sought to enrich knowledge space for the FNN learning (Zhang
and Veenker, 1991; Cho and Cha, 1996).

3.2.4. Node optimization
Primarily, node optimization can be addressed in three ways: (1) by

choosing activation functions at the FNN active nodes from a set of
activation functions (Liu and Yao, 1996; Tong and Mintram, 2010); (2)
by optimizing the arguments of activation function (Ojha et al., 2014);
and (3) by placing a complete model at the nodes of a network (Oh and
Pedrycz, 2002; Hirose, 2006).

It was found that FNN performed better when it has non-
homogeneous nodes (different activation function at different
nodes) than that of the homogeneous nodes (Mani, 1990). Liu and
Yao (1996) aimed for an evolution in FNN nodes by selecting sigmoid
and Gaussian function adaptively at the nodes. Moreover, adaptation in
both nodes and architecture using EAs, where the design of nodes was
inspired by locus flight system and tailflip of crayfish (Dumont et al.,
1986), can further improve FNN performance (Stork et al., 1990). For
this purpose, Ling et al. (2007) gave idea of an input dependent FNN
that had a combined chromosome representation (Fig. 6), where a real-
coded GA for simultaneous optimization of weights, activation func-
tions, and architecture was used.

On the other hand, to optimize nodes, a family competitive EA
was proposed by Yang and Kao (2001), where three operators, such as
decrease-Gaussian-mutation, Cauchy-mutation, and self-adaptive-mu-
tation were defined. Moreover, family-competition is a process that
generates a pool of L many FNNs by recombination and mutation
operations and selects an FNN from that pool. The family-competition
with different mutation operator is repeated until the best FNN is
found. Many others found that the adaptation in FNN nodes by one of
the methods mentioned above can improve FNN performance to some
extent (Alvarez, 2002; Leung et al., 2003; Augusteijn and Harrington,
2004; Nedjah et al., 2007).

The third aspect of node optimization is to design a node as a model
itself. Such modification leads to variate of neural network paradigms
such as polynomial neural network (Oh and Pedrycz, 2002; Andoni
et al., 2014), where the nodes are designed to as a polynomial function
based on inputs to the nodes. Similarly, the nodes of a GMDH neural
network is designed as an Ivakhnenko polynomial (Puig et al., 2007);
the nodes of a complex value neural network or multivalued neural
network is designed with a complex value activation functions (Hirose,
2006); the node of spiking neural networks has specific behavior, in
which a node signal is propagated to another node only if the intrinsic
quality of neural activation value is above a defined threshold (Sporea
and Grüning, 2013); the nodes of fuzzy neural network paradigm is
designed using the concepts of fuzzy theory (Fullér, 2013); the node
and the architecture of the Quantum neural network are inspired by
the quantum computing (da Silva et al., 2016; Narayanan and
Menneer, 2000; Kouda et al., 2005; Li et al., 2013). In all such
methods, metaheuristics have a significant role in the optimization.

3.2.5. Learning algorithm optimization
The initial thought of learning algorithm optimization is the

optimization of its parameters. For example, the optimization the
learning rate and the mutation factor parameters of BP by applying
some metaheuristics (Belew et al., 1990). To optimize the parameters
of an FNN learning algorithm, its parameters (e.g., BP parameters) and
learning rules are encoded onto a genotype (Harp et al., 1989; Baxter,
1992). However, formulating BP parameter such as learning rule,
which is a dynamic concept, into a static chromosome is disadvanta-
geous (Chalmers, 1990). Hence, a genetic coding for four components
(current weight, activation function of the incoming node and outgoing
nodes, input) local to weight in an FNN can encode (Chalmers, 1990).

Fig. 6. Meta-learning scheme (a), where LR is learning parameter, ND is activation
function, AR is architecture, and WT is weight (Abraham, 2004). Combined chromosome
structure (b).
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Moreover, assuming that each node in a network uses same learning
rule, an evolution in learning was proposed in Kim et al. (1996), where
weights optimization related to a particular node depended only on the
input/output at that node. Evolution in learning rule can be described
as described by Yao (1999):
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where t is the iteration, wΔ t is weight change, w w w, , …, n1 2 are weights
associated with a node, θi is real-valued coefficient that is determined
by using EAs. However, learning rule (10) is impractical because of it
required huge computation time. Hence, bio-inspired algorithms may
be employed for determining the coefficient in (10).

3.2.6. Combination of FNN components optimization
Fig. 3 is an impressive representation of the most of FNN

optimization combinations, where the genetic representation of the
combination of FNN components can be represented in Fig. 6, which
refers to a hierarchy of combination, called meta-learning scheme. In
the meta-learning scheme, top down or bottom up optimization
approach, which means, weights to learning rule and learning rules
to weight optimization can be adopted (Abraham, 2004). However, it
resembles one-by-one learning scheme. Hence, the advantageous
approach is to represent each component of FNN side-by-side onto a
genetic vector for optimization, which indicates the confluence of all
components of FNN as indicated by area "a8" in Fig. 3.

Yao (1993, 1999) summarized all such form of adaptation in
evolutionary artificial neural network (EANN), which is a special
class of artificial neural network, where in addition to learning;
evolution is another fundamental form of adaptation. Infact a para-
digm, called Neuroevolution that accommodates adaptive learning all
or some components of FNN in some intuitive ways by applying EAs.
For examples, generalized acquisition of recurrent links (GNARL)
(Angeline et al., 1994), evolutionary programming net (EPNet) (Yao
and Liu, 1997), neuroevolution of augmenting topologies (NEAT)
(Stanley and Miikkulainen, 2002), hypercube-based neuroevolution
of augmenting topologies (HyperNEAT) (Gauci and Stanley, 2007),
evolutionary acquisition of neural topologies (EANT2) (Kassahun and
Sommer, 2005), and heterogeneous flexible neural tree (HFNT) (Ojha
et al., 2017) optimizes both FNN structure and parameters (weights)
using some direct or indirect encoding methods. Moreover, several
other paradigms and methods proposed in the past for the simulta-
neous optimization of FNN components are described as follows.

A structured genetic algorithm was proposed by Dasgupta and
McGregor (1992), which simultaneously optimized both architectures
and weights. It was found that the simultaneous optimization of both
weight and architecture lead to a better generalization (Kitano, 1994;
Maniezzo, 1994; Girosi et al., 1995; Arifovic and Gencay, 2001).
Considering permutation2 problem in a GA, EP-based mutation
mechanism for evolving FNN architecture was proposed by Yao and
Liu (1997) is known as EPNet.

A neuroevolution of augmenting topologies (NEAT) intro-
duced by Stanley and Miikkulainen (2002) was a GA-based evolution of
an FNN phenotype as a whole, in which a special mutation and crossover
operator were defined for manipulating nodes and connections of FNN.
Specifically, the linear network information FNN weights, nodes, and
connection information were encoded using genetic encoding. The
proposed NEAT was evaluated over several applications, and its perfor-
mance was found outperforming static FNN topology.

A virtual subpopulation approach was proposed by Salajegheh
and Gholizadeh (2005) for the optimization of FNN using EAs. Later,

while indicating a permutation problem, crossover operator as a
combinatorial optimization problem was proposed in which each
hidden node was considered as a subnetwork and a complete network
was evolved using the evolution of several subnetworks (García-
Pedrajas et al., 2006). Additionally, GA-based and SA-based crossover
operators were applied to generate an offspring (new individual
subnetwork). To maintain diversity in population, two mutation
operators such as BP-mutation and random-mutation were proposed.
In BP-mutation, few iterations of BP algorithm were applied to update
weights of the subnetwork, and in random mutation, weights of
subnetwork were randomly replaced with new weights. Hence, a
coevolution of FNN weights and architecture was proposed that
evolved FNN with the cooperation of the individuals of a subnetwork
population.

A cooperative coevolution neural network process—inspired
by virtual subpopulation approach (Salajegheh and Gholizadeh,
2005)—was proposed by Moriarty and Miikkulainen (1997), which
was a symbiotic, adaptive neuroevolution (SANE) algorithm for con-
structing FNN in a dynamic environment. Unlike conventional evolu-
tionary approach, which uses a population of FNNs, SANE uses a
population of nodes, where each node establishes connections with the
other nodes to form a complete network.

Two reasons of better performance of SANE over conventional and
stand-alone metaheuristics were suggested. First, since SANE consider
the nodes as functional components of the FNN, it accurately searches
and evaluates nodes as genetic building blocks. Second, since a node
alone cannot perform well and evolutionary process evolves different
types of nodes, SANE was able maintains diversity in the population.
Later, the concept of SANE was extended, in which the selection of
several individuals from a population of hidden nodes was combined in
a various permutation in order to form several complete networks, i.e.,
evolution in hidden nodes led to an evolution of the complete network
(Garcia-Pedrajas et al., 2003).

A concept of sparse neural trees, in which GP for evolving
network structure and GA for parameter optimization was suggested by
Zhang et al. (1997). Similarly, a flexible neural tree (FNT) concept,
where GP was used for the adaptation in network structure and SA for
the optimization of the parameters (including parameters of activation
function) was proposed by Chen et al., (2004, 2006). FNT is a tree-like
model where adaptation in all components of is equally important.
Moreover, its components adaptation may take many forms (Fig. 3).
Hence, a beta basis function—which has several controlling para-
meters, such as shape, size, and center—was used at non-leaf nodes
of an FNT (Bouaziz et al., 2014). It was observed that embedding beta-
basis function at FNT nodes has advantages over other two parametric
activation function. A parallel evolution of FNT using MPI program-
ming and GPU programming respectively were proposed by Peng et al.
(2011) and Wang et al. (2012).

A slightly different direction of FNN modification and improvement
study can be seen as the study of quantum neural network (QNN).
At the first place, the QNN as a quantum perceptron was proposed by
Lewenstein (1994), where instead of classical weights, a unitary
operator was used to map inputs to an output. The study in QNN
encompasses the development of quantum weights, quantum neurons,
quantum network, and quantum learning (Narayanan and Menneer,
2000).

The design/algorithm of quantum network was thought as an
algorithm that can find the control parameters for a coupled qubit
system (Gershenfeld and Chuang, 1998) as it appears in quantum
computing. A comprehensive quantum inspired neural network is
presented by Menneer and Narayanan (1995), where two categories of
inspiration were drawn: strongly and weakly quantum inspired FNN. In
strongly inspired QNN, each pattern in a training set was considered as a
particle which is processed by a number of FNNs in different universes.
Such process was compared with the electrons or photons passing
through many slits simultaneously. Whereas, in weakly inspired QNN,

2 Permutation problem occurs when using traditional crossover operator, where a
population has traditional genetic representation of FNN architecture.
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each training pattern (though as a particle) was in its own universe.
Moreover, there were various QNN models proposed in the past by (1)
Behrman et al. (1996), (2) Chrisley (1997), (3) Menneer and Narayanan
(1995), and Ventura and Martinez (1998). A detailed description of
these QNN models is offered by Rudolph (2011).

3.3. Comments on metaheuristics approaches

It is indeed can be concluded that metaheuristic algorithms have
provided various dimension to the optimization of the FNNs. It has
opened several ways such that a generalized FNN can be obtained.
Especially the architecture simplification which is directly related to the
generalization of an FNN can easily be achieved through the evolving
FNN together with its other components. However, the primary dis-
advantage of using metaheuristic algorithms is the training time
consumption. Since the metaheuristic algorithms use a population (many
solution candidates) during optimization, the time consumption becomes
directly proportional to the number of candidates in a population.

It can also be argued that both conventional and metaheuristic
based FNN training take by far more training time than the extreme
learning machine (ELM) (Huang et al., 2006b). ELM is a three-layered
FNN architecture whose weights between input and hidden layer are
randomly assigned and never updated. Additionally, the weights
between hidden and output layer are updated in a single step using
some least square estimation. Hence, extremely less time required for
the learning of the FNN.

It is stated in NFL theorem (Wolpert, 1996) that it is difficult to find
a metaheuristic algorithm that solves all class of problems. Hence, a
metaheuristic algorithm may find difficulty in optimizing the FNN that
has been formulated for solving some specific problem (input patterns).
Additionally, it is not theoretically possible to understand or determine
that how fast a metaheuristics algorithm will converge or finds a
satisfactory solution. The only way to determine a metaheuristic
algorithm's convergence is by its empirical evaluations. Moreover,
since each metaheuristic applies some specific heuristic, it is difficult
to select one metaheuristic as the best metaheuristic at an instance for
a problem. It is only possible to select a metaheuristic by empirically
comparing the convergence speeds and trained FNN performances.

4. Multiobjective metaheuristic approaches

Multiobjective optimization procedure involves in optimizing two
or more objectives functions, simultaneously. Multiobjective algo-
rithms are efficient methods for evaluating Pareto-optimal solutions
for multiobjective problems. Since optimizing training error cannot
provide generalization alone, FNN optimization is viewed from the
multiobjective perspective.

Let us first investigate: why the multiobjective framework is
needed for FNN optimization, what are the objective functions
required for framing FNN as a multiobjective problem, and how the
objective functions can be framed into multiobjective optimization.
Answers to these question lie in the following discussion.

First, a cost function (4) or any equivalent function is the foremost
necessity for the supervising training of FNN.

Second, the generalization of FNN is an essential aspect of its
optimization. One approach is to use validation error on cross-
validation data because an FNN with low training error may not
perform well on unseen (test) data unless FNN is generalized.
Moreover, minimization of generalization error is essential than the
minimization of training error.

Another approach is to add a regularization term to the training
error to avoid overfitting. Additionally, minimizing network complexity
leads to a better generalization (Jin et al., 2005a). Hence, general-
ization can be achieved by adding a complexity indicator term to
training error, i.e., the generalization by minimizing training error and
simplifying network complexity.

Third, reducing input-feature—when a problem is available with a
huge input dimension (feature)—can lead to a better generalization.
However, input dimension reduction and training error reduction are
two contradictory objectives.

Finally, the conclusion is, the training error (4) or equivalent cost
function cf needs to be optimized with one or more additional
objectives to achieve generalization, which is why multiobjective
framework for optimizing FNN are used.

Let us say that training error (4) is ctrn, and an additional objective
is cadd. So, a generalized error cgen may be computed by adding an
objective to training error as:

c c λc= + ,gen trn add (11)

where λ > 0 is a hyperparameter that controls the strength of addi-
tional objective cadd. The validation error term ccv, regularization
term creg, or network complexity cnet or a combination of all can be
considered as an additional objective cadd in (11). The regularization
term creg is the weight decay or norm of weight vector w as:
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Similarly, a validation error ccv is usually computed using (4) on a
cross-validation data. On the other hand, the network complexity cnet
is computed as:
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where z is the number of nodes in the network c (Fig. 5(a)), or any user-
defined function can also be used for evaluating network complexity,
e.g., the number of nodes, the number of connections, etc.

However, the generalization objective of the form (11) is a
scalarized objective that has two disadvantages (Das and Dennis,
1997). First, determining an appropriate hyperparameter λ that
controls the contradicting objectives. Hence, the generalization ability
of the produced model by using (11) will be a mystery. Second, the
objective (11) leads to a single best model that tells nothing about how
contradicting objectives were handled. In other words, no single
solution exists that may satisfy both objectives. Therefore, general-
ization error (11) need to be formulated into a multiobjective form:

c c cmin{ , , , …}trn reg cv , i.e., a multiobjective optimization needs to be
performed as:

c c c Sw w w wminimize { ( ), ( ), …, ( )}subject to ∈ ,m1 2

where m ≥ 2 is the number of objective functions  c : →i
n

≥0. The
vector of objective functions is denoted by c c cc w w w= 〈 ( ), ( ), …, ( )〉m1 2 .
The decision (variable) vectors w w ww = 〈 , , …, 〉n1 2 belong to the set

S ⊂ n, which is a subset of the decision variable space n. The word
“minimize” indicates the minimization all the objective functions
simultaneously.

A nondominated solution is one in which no one objective function
can be improved without a simultaneous detriment to at least one of
the other objectives of the solution. The nondominated solution is also
known as a Pareto-optimal solution.

Definition 3. Pareto-dominance - A solution w1 is said to dominate a
solution w2 if i m∀ = 1, 2, …, , c cw w( ) ≤ ( )i i1 2 , and there exists
j m∈ {1, 2, …, } such that c cw w( ) < ( )j j1 2 .

Definition 4. Pareto-optimal - A solution w1 is called Pareto-optimal
if there does not exist any other solution that dominates it. A set
Pareto-optimal solution is referred to as a Pareto-front.

Now, a multiobjective algorithm must provide a homogeneous
distribution of a population along Pareto front and improve solutions
along successive generations (Gaspar-Cunha and Vieira, 2005). Hence,
three basic operators can be used (Gaspar-Cunha and Vieira, 2005). (1)
Fitness assignment to guide a population in the direction of Pareto-
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front using robust and efficient multiobjective selection method. (2)
Density estimation to maintain solutions distributed over entire
Pareto-front using operators that take account of the solution's
proximity. (3) Archiving to prevent degradation in fitness during
successive generations by maintaining an external population to
preserve the best solutions and for periodic input to the main
population. A detailed survey of multiobjective algorithms is offered
by Coello (1999) and Zhou et al. (2011). Now, based on the above
discussion on the cost functions and generalization conditions, the
multiobjective for FNN optimization can be categorized as non-Pareto
based multiobjective approach and Pareto-based multiobjective ap-
proach.

4.1. Non-Pareto based multiobjective approaches

In non-Pareto based multiobjective approach, the objective func-
tions are aggregated as mentioned in (11) or by some other means. For
example, de Albuquerque Teixeira et al. (2000) proposed to add a
regularization term c c− reg0 to training error c c− trn0 , where c0 is the
origin of the two objectives. To obtain an efficient solution, they
designed a vector vc of scalar objectives by varying the hyperpara-
meter λ from 0 to 1. Hence, training FNN for each scalar objective in
vector vc, a Pareto set was obtained, and then, it was possible to select
the best solution from the Pareto front. However, this was an expensive
approach, which does not use any Pareto-based multiobjective algo-
rithm to compute Pareto set; rather, an ellipsoid method (Bland et al.,
1981) was applied to train FNN for each scalar objective vc vc∈i
sequentially.

Similarly, to achieve generalization, Costa et al. (2003) proposed a
sliding mode control BP algorithm for the multiobjective treatment
to FNN objectives ctrn and creg. The optimization trajectory of the 2D
space of the objectives ctrn and creg was controlled by modifying BP
weight update rules using two sliding surface control indicators each
belongs to the mentioned objectives, respectively.

Multiobjective treatment to FNN was also offered by using im-
provising metaheuristics itself such as a predator-prey algorithm was
devised by Pettersson et al. (2007). To get a generalized network, the
predator-prey algorithm used a family of the randomly generated
population of sparse neural networks, called pray population and an
externally induced family of predators population whose job was to
prune preys populations based on the objectives ctrn and cnet was also
generated. Similarly, a hybrid multiobjective approach, where a
geometrical measure based on singular-value-decomposition for esti-
mating a necessary number of nodes in a network was proposed by Goh
et al. (2008).

Additionally, a micro-hybrid genetic algorithm was introduced to
fine-tuning the network performance. A hybrid algorithm, which uses
GA for evolving FNN and uses PSO, BP, and LM for fine-tuning the
evolved FNN was proposed by Almeida and Ludermir (2010). In the
proposed hybrid algorithm, several objectives function such as training
error ctrn, validation error ccv, number of hidden layers chid, number
of nodes cnode, and activation function cfun were aggregated as:

c αc βc γc δc θc= + + + + ,net trn cv hid node fun (14)

where, α, β, γ, δ, and θ were controlling parameters. Hence, multiple
objectives were optimized simultaneously.

As mentioned above in Section 4, the aggregating objective
function has disadvantages in obtaining the best generalized solution.
It is evident from (14) that determining hyperparameters for controlling
objective function is a challenging task. Therefore, Pareto-based multi-
objective is an efficient choice for the multiobjective treatment of FNNs.

4.2. Pareto based multiobjective approaches

The advantages of applying Pareto-based learning is thoroughly
explained and compared with a single and scalerized objective by Jin

and Sendhoff (2008). For example, a nondominated sorting
genetic algorithm version II (NSGA-II) (Deb et al., 2000) when
used for optimizing objectives ctrn and cnet offers a Pareto set by
optimizing both objectives simultaneously using a nondominated
sorting method as defined in Definition 3. Hence, NSGA-II can be
applied to obtained a regularized network by optimizing the objectives
ctrn and creg (Jin et al., 2004).

Similarly, Pareto differential evolution (PDE) algorithm and its
variant self-adaptive PDE algorithm was applied to optimize objectives
ctrn and cnet simultaneously that offered a Pareto-set, from which the
best solution was picked-up according to network complexity and
approximation error examination (Abbass, 2003, 2002). Simultaneous
optimization of the objectives ctrn and cnet were also addressed using
multiobjective PSO to generalize FNN performance (Yusiong and
Naval, 2006).

For an image classification problem, Wiegand et al. (2004) pointed
out two crucial points: the classification speed and the classification
accuracy cacc. The classification speed was then related to the network
complexity (number of hidden neurons) cnet. The proposed trade-offs
between classification speed and classification accuracy were addressed
using NSGA-II.

Similarly, Roth et al. (2006) studied three methods for image
classification problem: linear aggregating (LA), NSGA-II with determi-
nistic selection (DM), and NSGA-II with tournament selection (LM).
They proposed to optimize network complexity cnet and accuracy cacc.
Moreover, they combined regularization term creg with accuracy cacc
and proposed an adaptive strategic for designing network topology
using reproduction operators for both hidden layer and input layer. The
hidden layer operators were add-connection, delete-connection, add-
node, and delete-node. The receptive (input) layer had the following
operators: add-connection, delete-connection, add-node, and delete-
node. Interestingly, they observed that DM and LM performed better
than LA, i.e., Pareto-based multiobjective algorithms performed better
than that of the scalerized objectives. Such ability of the Pareto-based
treatment to FNN to obtain general FNN was exploited by several
researchers for solving many real-life applications (Jin et al., 2005b;
Furtuna et al., 2011; Zăvoianu et al., 2013; Karpat and Özel, 2007).

Further, the coevolution FNN concept (Garcia-Pedrajas et al.,
(2003, 2002b)) was extended by García-Pedrajas et al. (2002a) under
the multiobjective framework, by using subnetwork and network
concepts. A subnetwork was a collection of nodes, i.e., a subnetwork
was considered as a hidden node for a network. Therefore, a network
was a collection of subnetworks. So, a population P1 of subnetwork,
which was evolved separately using NSGA-II was used to construct a
population P2 of networks. Then, NSGA-II was again applied to evolve
population P2. Interestingly, authors defined separate objectives for
population P1 (subnetworks objectives) and P2 (networks objectives) so
that the functional diversity in both network and subnetwork can be
maintained. Additionally, some metrics (objectives) for measuring
network and subnetwork functional diversities were defined. The
objective of subnetworks were differences (for maintaining functional
diversity of subnetwork), substitution (to replace poor candidates by
better candidates), and complexity (for counting the number of
connection, nodes, and sum of all weights). Therefore, they coevolved
overall network with the cooperation of subnetwork that evolves
together with the whole network to get a general solution to a
problem.

Apart from the discussed objective in this Section, some interesting
dimensions in multiobjective treatment to FNN is offered by Giustolisi
and Simeone (2006), in which they proposed to apply NSGA-II for the
simultaneous optimization of three objectives: input-dimension, train-
ing error, and network complexity. Hence, an optimized a network that
performs well on the minimal set of input dimension was obtained.
Similarly, Cruz-Ramírez et al. (2010) and FernandezCaballero et al.
(2010) used a Pareto-based memetic algorithm approach for combin-
ing PDE and Rprop algorithms to minimize objective pairs true
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classification rate and minimum sensitivity (miss-classification rate),
simultaneously.

As a result of metaheuristic or multiobjective metaheuristic treat-
ment, a set of FNN network is obtained and selecting the best FNN
from that set is a difficult task. Since selecting a single best FNN from
may not offer a generalized solution and the residual error can still be
remaining many problems when selection single best FNN (Sejnowski
and Rosenberg, 1987), then an ensemble of a set of FNNs is
recommended.

5. Ensemble of feedforward neural networks

Metaheuristics optimization of FNN leads to a final population that
contains many solutions close to the best solution. Moreover, the
solution in the final population are divers in the following sense: (1)
parametric (each FNNs have different sets of weights); structural (each
FNNs have different network configurations); and (3) training set (each
FNNs are trained on different parts of a training set). Hence, a
collective decision (ensemble) oflmany diverse candidates selected
from a final population may offer desired generalization (Yao and
Liu, 1998b). The literature that explains how to construct diverse
FNNs and how to combine decisions of diverse FNNs are summarized
as follows.

The very basic idea is to apply single-solution based algorithms on/
many FNNs to getlmany diverse solutions (Hansen and Salamon,
1990). The decision oflmany candidates which were created either by
single solution-based metaheuristics, or by population-based meta-
heuristics, or by any other means are combined using the following
methods (Polikar, 2006; Yao and Liu, 1996): (1) majority voting
method (for classification problems); (2) arithmetic mean (for regres-
sion problem); (3) rank-based linear combination; (4) linear combina-
tion by using recursive least square (Davis and Vinter, 1985) (to
minimize weighted least squares error so that redundant individuals
are eliminated); (5) evolutionary weighted mean or majority voting
(metaheuristic to determine impact of an FNN in ensemble); and (6)
entropy-based method for combining FNNs in ensemble (assigning
entropy to FNNs during the learning process) (Zhao and Zhang, 2011).

Since population-based metaheuristics lead to an optimized final
population, it is advantageous to use the final population for making
ensemble (Yao and Liu, 1998b). However, there are two fundamental
problems with it (Liu and Yao, 1999): (1) determining ensemble size,
(2) how to maintain diversity in the population. Hence, a negative
correlation learning (NCL) algorithm that optimized and combined
individual FNNs in an ensemble during learning process was proposed
by Liu and Yao (1999). NCL optimized all individual FNNs simulta-
neously and interactively by adding a correlation penalty terms to the
cost functions. Moreover, NCL produced negatively correlated and
specialized FNNs by using co-operation among each FNNs of a
population (Qin et al., 2005).

To determine the size of ensemble automatically, EA-based en-
semble procedure was laid down in which NCL was applied during
networks training. Moreover, different FNNs were allowed learn
different parts of training data and the best (according to fitness) were
selected for ensemble (Liu et al., 2000). Additionally, a constructive-
cooperative-neural-network-ensemble was proposed by Islam
et al. (2003) that determined ensemble size by focusing on accuracy
and diversity during a constructive, cooperative procedure (Yao and
Islam, 2008).

However, mere training fitness based selection of candidates for the
ensemble is insufficient because it does not tell much about candidates
role/influence in the ensemble. This problem was addressed in a GA-
based selective ensemble method (Zhou et al., 2002), which selects
a subset of the population and determine the strength of selected
candidates using GA. It was also shown that the ensemble of a subset of
the population was found performing better than that of the whole
population (Zhou et al., 2002). The effectiveness such GA-based

selection was found efficient than the traditional ensemble methods:
bagging (Breiman, 1996) and boosting (Schapire, 1990).

It is beneficial to partition/fracture training data and allows
different FNN in the population to learn various parts of training data
(Breiman, 1996; Schapire, 1990). An evidence of such was examined by
Bakker and Heskes (2003) and Chen et al. (2010), where it was found
that the ensemble of a few FNNs that was trained using bootstrapping
performs better than that of an ensemble of a larger number of FNNs.
Similarly, the efficiency of using distinct training sets for optimizing
different FNNs was proved when a class-switching ensembles
approach proposed by Martínez-Muñoz et al. (2008) and were com-
pared with bagging and boosting methods.

At one hand bootstrapping method allows FNN to learn different
training samples. On the contrary, a clustering-and-coevolution
approach for constructing neural network ensembles proposed by
Minku and Ludermir (2008) partition the input space using a cluster-
ing method to reduced number of input nodes of FNNs. Hence, in the
ensemble, diverse FNNs (different FNNs were specialized in various
regions of input space) were created. Moreover, it reduced run time of
learning the process by coevolving (divide-and-conquer method)
different FNNs using cooperation between FNNs. Such method im-
proves diversity and accuracy of an ensemble system (Minku and
Ludermir, 2008).

Similarly, a method was suggested by Kim and Cho (2008) for
generating diverse evolutionary FNNs using a fitness-sharing method—
a fitness sharing method shares resources if the distance between the
individuals is smaller than the predefined sharing radius. Specifically,
authors proposed a speciation based evolutionary neural ensemble
method for constructing ensemble by combining FNNs using a knowl-
edge space method. On the other hand, a progressive interactive
training scheme called a sequential-neural-network-ensemble-
learning method, which trained FNNs one-by-one by interaction from
a central buffer of FNNs was proposed by Akhand et al. (2009).

Both diversity and accuracy is a crucial aspect in construing
ensemble of FNNs (Polikar, 2006). However, accuracy and diversity
are contradictory to each other, so, a multiobjective approach may be
applied to evolve FNN population by maintaining accuracy and
diversity simultaneously (Chandra and Yao, 2006). For this purpose,
multiobjective regularized negative correlation learning that
maximized performance and maximized the negative correlation
between individuals in population was found efficient (Chen and Yao,
2010).

6. Challenges and future scopes

The effectiveness of FNN training primarily depends on data
quality, which is governed by the following data quality assurance
parameters: accuracy, reliability, timeliness, relevance, completeness,
currency, consistency, flexibility, and precision (Wand and Wang,
1996; Pipino et al., 2002). Usually, data cleaning is a major step
before modeling (Hernández and Stolfo, 1998). Therefore, training of
the FNN remains always sensitive to the data cleaning process and it
poses a significant challenge to adapt some mechanism in training
process such the sensitivity towards data-clean may be reduced.
Additionally, one problem related to data-driven modeling (FNN
learning) is the data itself which can be insufficient, imbalanced,
incomplete, high-dimensional, or abundant.

For the case insufficient data, usually the input hyperspace is
exploited to generate virtual samples to fill the sparse area of the
hyperspace, and by monitoring FNN performance on the virtually
generated samples (Cho et al., 1997). The second approach exploits the
dynamics of EAs in conjunction with FNNs to obtain new samples
(Zhang and Veenker, 1991). However, this area is still much to explore,
where some open questions such as how efficiently FNNs can be
trained with virtually generate data to mitigate the insufficiency. On the
other hand, research in the area of imbalance dataset is continued to
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interest researcher (Mazurowski et al., 2008).
The present era of data analysis is what we call big data, i.e., we

need to deal not only with high-dimensional data but also with the
variety data and stream data (Zikopoulos et al., 2011). High-
dimensional data, such as gene expression data, speech processing,
natural language processing, social-network-data, etc., poses signifi-
cant challenges. Such challenge is to some extent addressed by deep
learning paradigms that allow the arrangement several units/layers of
FNNs (or any other model) in a hierarchical manner to process and
understand insights of such high-dimensional data (Hinton et al.,
2012, 2006). High-dimensional data can also be managed/reduced by
encoding or decoding methods and using FNNs training (Hinton and
Salakhutdinov, 2006). Therefore, FNNs has a greater role in feature
reduction.

In a non-stationary environment, such as stock-price market,
weather forecasting, etc., data comes in the stream, i.e., data comes in
sequential order, and traditionally, re-training based mechanics for
dynamic learning (online learning) of FNN is the basic option (Saad,
2009). However, it is still an open problem to design strategies for the
dynamic training of FNN.

Apart from the crucial aspects that how to manage non-stationary
data, the aspect that how to handle multi-view (heterogeneity) of
data is an additional challenge. The quest of developing a model that
can stand robust and efficient for the non-stationary data caused by the
time-dependent process of data generation, and can accommodate new
knowledge (newly generated data sample) is a significant topic in
machine learning research (Ditzler et al., 2015). On the other hand,
integration of data or of the models for that matter for the hetero-
geneous data generated or gathered from different instruments and
data-generation processes is a significant research problem (Ritchie
et al., 2015; Pavlidis et al., 2001).

Moreover, present era, the fourth industrial revolution, is of
Internet of Things (IoT) (Prisecaru, 2016). In IoT, sophisticated
technologies such as smartphone and smartwear provide several
forms of data, e.g., human activity recognition (Kim et al., 2010).
Additionally, it demands application to be simple. Hence, FNN models
which when aims to such technologies needs to be less complex.
Therefore, FNN architecture simplification or model's complexity
reduction is a challenging task. Such problem can be addressed
through the integration of FNN with statistical methods like the one
usually done with hidden Markov model (Trentin and Gori, 2001).
Therefore, such kind of modification to network architecture and
specialized node design may lead to different paradigms of FNN that
may solve various real-world complex problems.

7. Conclusions

Feedforward neural network (FNN) is used for solving a wide range
of real-world problems, which is why researcher investigated many
techniques/methods for optimizing and generalizing FNN. Specifically,
metaheuristics allow us to innovate and improvise methods for
optimizing FNN that in turn address its local minima and general-
ization problems.

Initially, only gradient based linear approximation and quadratic
approximation methods for optimizing FNNs were employed to train
FNN. These conventional algorithms (backpropagation, Quickpro,
Rprop, conjugate gradient, etc.) are local search algorithms that exploit
current solution to generate a new solution; however, they lack in
exploration ability, therefore, usually, finds local minima of an
optimization problem.

Unlike conventional approaches, metaheuristics (e.g., genetic algo-
rithm, particle swarm optimization, ant colony optimization, etc.) are
good at both exploitation and exploration and can address simulta-
neous adaptation in each component of FNN. However, no single
method can solve all kinds of problem. So, we need to improvise, adapt,
and construct hybrid methods for optimizing FNN. Therefore, several

dynamic designs of FNN are reported in the literature: EPNet (an
adaptive method of FNN architecture optimization), neuro-evolution of
augmenting topologies, flexible neural tree, cooperative coevolution
neural network, etc., are among them. Hence, there is a wide spectrum
of FNN optimization/adaptation is possible with metaheuristic treat-
ment to FNNs (Fig. 3) in which the fundamental aspect is the
formulation of FNN (phenotype) to vectored form (genotype) or any
other form of mechanism for manipulation of FNN components.

Since there are many components to be manipulated by means of
metaheuristic strategies and the availability of the fact that FNN
generalization ability depends on the optimization its all the compo-
nents, multiobjective treatment to FNN were used. The multiobjective-
based training allows an FNN to evolve with handling two or more
FNN-related objectives, such as approximation error, network com-
plexity, input dimension, etc. Moreover, the generalization ability of
system can be easily improved by combining decision of many
candidates of the system. Hence, an ensemble of FNNs by making
use of the metaheuristic final population was proposed and the two
crucial aspect accuracy and diversity of an ensemble were taken care
during propose of evolving FNNs.

It is evident from such aspects of FNN optimization that the future
research will be able to bring the new paradigms of FNNs by applying
or by the inspiration from the discussed methods in this article. Hence,
that will overcome the data quality problem and will be handling new
challenges of big data to cope-up with the new era information
processing.
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