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ABSTRACT 
One of the major operators of Bacterial Foraging 
Optimization Algorithm (BFOA) is the reproduction 
phenomenon of virtual bacteria each of which models one 
trial solution of the optimization problem. During 
reproduction, the least healthier bacteria (with a lower 
accumulated value of the objective function in one 
chemotactic lifetime) die and the other healthier bacteria 
each split into two, which then starts exploring the search 
place from the same location. Thus the population size is 
maintained constant in BFOA. In this paper we try to model 
the reproduction dynamics and then analyzed the stability of 
the reproductive system very near to equilibrium. We also 
find the relative positions of two bacteria for which a stable 
reproduction event can take place in a one dimensional 
fitness landscape. 

Categories and Subject Descriptors 
 I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search --- Heuristic methods; G.1.6 

[Numerical Analysis]: Optimization --- Global 

optimization; G.3 --- Probabilistic algorithms 

General Terms  

Algorithms  

Keywords 

Bacterial foraging, computational  chemotaxis,  

stability analysis   

1. INTRODUCTION 
To tackle several complex search problems of real world, 
scientists have been looking into the nature for years - both 
as model and as metaphor - for inspiration.  
 
 

 
 

 
Optimization is at the heart of many natural processes like 
Darwinian evolution, group behavior of social insects and 
the foraging strategy of other microbial creatures. Natural 
selection tends to eliminate species with poor foraging  
strategies and favor the propagation of genes of species with 
successful foraging behavior, as they are more likely to 
enjoy reproductive success.  
Since a foraging organism or animal takes necessary action 
to maximize the energy utilized per unit time spent for 
foraging, considering all the constraints presented by its own 
physiology such as sensing and cognitive capabilities, 
environment (e.g. density of prey, risks from predators, 
physical characteristics of the search space), the natural 
foraging strategy can lead to optimization and essentially 
this idea can be applied to real-world optimization problems. 
Based on this conception, Passino proposed an optimization 
technique known as Bacterial Foraging Optimization 
Algorithm (BFOA) [1, 2, and 3]. Until date, the algorithm 
has successfully been applied to real world problems like 
optimal controller design [1,2], harmonic estimation [4], 
transmission loss reduction [5], pattern recognition [6], 
controller synthesis for active power filters [7] and, power 
system optimization [8]. BFOA is a newly added member in 
the coveted realm of Swarm Intelligence [9, 10, 16, 17], 
which also includes powerful optimization techniques like 
the Particle Swarm Optimization (PSO) [10, 11] and Ant 
Colony Optimization (ACO) [12].  
One of the major steps of BFOA is the event of reproduction 
in which the bacterial population is at first sorted in the 
order of ascending accumulated cost (value of the objective 
function to be optimized), then the worst half of the 
population containing least healthy bacteria is liquidated 
while all the members of the better half is split into two 
bacteria, which start exploring the search space from the 
same location on the fitness landscape. As pointed out by 
Passino, this phenomenon finds analogy with the elitist-
selection mechanism of the classical evolutionary algorithms 
(EA) [1, 2, and 13]. Bacteria in the most favorable 
environment (i.e., near an optima) gain a selective advantage 
for reproduction through the cumulative cost. 
This paper provides a simple mathematical analysis of the 
reproduction mechanism in BFOA. We focus our attention 
on a simple two-bacterial system working over a one 
dimensional fitness landscape and try to form the 
reproduction event as dynamics [14]. The resultant dynamics 
is then represented in a state space, where the displacement 
and velocity of a bacterium are assumed to be the state 
variables. Then we undertake a stability analysis of 
reproduction very near to the equilibrium point and try to 
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find the relative positions of the two bacteria for which only 
a stable reproduction event can take place. 
The rest of the paper is organized as follows. Section 2 
provides a brief description of the bacterial foraging 
optimization algorithm. In Section 3 we show how we can 
model reproduction mathematically. Then the stability 
analysis of the obtained dynamics is carried out in Section 4. 
Finally the conclusions are drawn with a discussion on the 
future research scopes in Section 5. 

 

2. BACTERIAL FORAGING 

OPTIMIZATION ALGORITHM 
The bacterial swarm proceeds through four principal 

mechanisms namely chemotaxis, swarming, reproduction 

and elimination-dispersal [1]. Below we briefly describe 

each of these processes and finally provide a pseudo-code of 

the entire algorithm. 
 

I. Chemotaxis: This process simulates the movement of an 

E.coli cell through swimming and tumbling via flagella. 

Biologically an E.coli bacterium can move in two 

different ways. It can swim for a period of time in the 

same direction or it may tumble, and alternate between 

these two modes of operation for the entire lifetime. 

Suppose ),,( lkj
iθ represents i-th bacterium at j-th 

chemotactic, k-th reproductive and l-th elimination 

dispersal step. C(i) is the size of the step taken in the 

random direction specified by the tumble (run length 

unit). Then in computational chemotaxis the movement of 

the bacterium may be represented by                 
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                Where ∆  indicates a unit length vector in the   

    random direction.  

 

II. Swarming: An interesting group behavior has been 

observed for several motile species of bacteria including 

E.coli and S. typhimurium, where stable spatio-temporal 

patterns (swarms) are formed    in semisolid nutrient 

medium. A group of E.coli cells arrange themselves in a 

traveling ring by moving up the nutrient gradient when 

placed amidst a semisolid matrix with a single nutrient 

chemo-effecter. The cells when stimulated by high level of 

succinate release an attractant aspertate, which helps them 

to aggregate into groups and thus move as concentric 

patterns of swarms of high bacterial density. The cell to 

cell, signaling in E.coli swarm may be represented with 

the following function. 
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 where T
D ][ ,..........,.........2,1 θθθθ =  is a point in the D-

dimensional search domain. 

 

III. Reproduction: The least healthy bacteria eventually die 

while each of the healthier bacteria (those yielding lower 

value of the cost function) asexually split into two bacteria 

which are placed at the same location of the fitness 

landscape. This keeps the swarm size constant. 

 

IV. Elimination and Dispersal: Gradual or sudden changes 

in the local environment where a bacterium population 

lives may occur due to various reasons e.g. a significant 

local rise of temperature may kill a group of bacteria that 

are currently in a region with a high concentration of 

nutrient gradients. Events can take place in such a fashion 

that all the bacteria in a region are killed or a group is 

dispersed into a new location. To simulate this 

phenomenon in BFOA some bacteria are liquidated at 

random with a very small probability while the new 

replacements are randomly initialized over the search 

space. 

 

3. ANALYSIS OF THE 

REPRODUCTION STEP IN BFOA 
Let us consider a small population of two bacteria that 

sequentially undergoes the four basic steps of BFOA over a 

one-dimensional objective function. The bacteria lives in 

continuous time and at the t-th instant its position is given 

by )(tθ . Below we list a few assumptions that were 

considered for the sake of gaining mathematical insight.  

 

3.1 Assumptions 
i) The objective function J(θ) is continuous and 

differentiable at all points in the search space. 

ii) The analysis applies to the regions of the fitness 

landscape where gradients of the function are small i.e., 

near to the optima. The region of fitness landscapes 

between 1θ and 2θ is monotonous at the time of 

reproduction. 

iii) During reproduction, two bacteria remain close to each 

other and one of them must not superpose on another 

(i.e. 0|| 12 →−θθ may happen due to reproduction 

but 12 θθ ≠ . Suppose P and Q represent the respective 

positions of the two bacteria as shown in Figure 1). At 

the start of reproduction, 1θ and 2θ  remain apart from 

each other but as the process progresses they come 

close to each other gradually. 

 

3.2 Analytical Treatment 
In our two bacterial system )(1 tθ  and )(2 tθ represent the 

position of the two bacteria at time t and )(),( 21 θθ JJ  

denote the cost function values at those positions 

respectively. The accumulated cost may be mathematically 



modeled as dttJ

t

))((
0

1∫ θ . For a minimization problem, 

higher accumulated cost represents that a bacterium did not 

get as many nutrients during its lifetime of foraging and 

hence is not as “healthy” and thus unlikely to reproduce.  

The two-bacterial system working on a single-dimensional 

fitness landscape is depicted in Figure 1. 

To simulate the bacterial reproduction we have to take a 

decision on which bacterium will split in next generation 

and which one will die. This decision may be modeled with 

the help of the well-known unit step function )(xu (also 

known as Heaviside step function [15]), which is defined as, 

                 ;1)( =xu If 0>x  

                          ;0= if 0<x                                   (3)                                                                                                         

In what follows, we shall denote )(1 tθ and )(2 tθ as 1θ  and 

2θ  respectively. Now if we consider that 1θ∆ is the 

infinitesimal displacement ( 01 →∆θ ) of the first 

bacterium in infinitesimal time t∆ )0( →∆t towards the 

second bacterium in favorable condition i.e. when the 

second is healthier than the first one, then the instantaneous 

velocity of the first one is given by, 
t∆

∆ 1θ . How this bacterial 

movement takes place is shown in figure. 2. Now when we 

are trying to model reproduction we assume the 

instantaneous velocity of the worse bacterium to be 

proportional with the distance between the two bacteria, i.e. 

as they come closer their velocity decreases but this occurs 

unless we incorporate the decision making part. So, if the 

first bacterium is the worse one then,  
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proportionality constant] 
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[If we assume that   1=k  
1sec−

]                                                                                               

 
Then we may model the decision making part with the unit 

step function in the following way: 
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Similarly, when we consider the second bacterium, we get, 
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In equation (5), dtJ

t

)(
0

1∫ θ represents the health of the first 

bacterium at the time instant t and dtJ

t

)( 1

0

1 θθ ∆+∫  represents 

the health corresponding to )( 11 θθ ∆+  at the time instant t. 

We are going to carry out calculations with the equation for 

bacterium 1 only, as the results for other bacterium can be 

obtained in a similar fashion.  

 
Fig 1.  Change of position of the bacteria during 

reproduction. 

 

We write the equation (5) corresponding to bacterium 1 as,        
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Again, )(xJ is assumed to be continuous and differentiable. 
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Lim is the value of the gradient at 

that point and may be denoted by 
1

1)(

θ

θ

d

dJ
 or 1G .  So we 

write,                                                          
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the instantaneous velocity of the first bacterium] 
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      [where 
dt

d
v 1

1

θ
=  and 1G  is the gradient of 

J at 1θθ = .] 

Now in equation (5) we have not yet considered the fact that 

the event of reproduction is taking place at t=1 only. So we 

must introduce a function of time 

))1((*2)( 2−−= tutr (unit step) ( ))1(( 2−− tu is 

multiplied with 2 for getting 1)( =tr , not 0.5, when t=1) in 

product with the right hand side of equation (5). This 

provides a sharp impulse of strength 1 unit at time t = 1. 

Now it is well known that )(xu may be approximated with 

the continuous logistic function )(xφ , where 

kx
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x
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    We note that,  
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Figure 2 illustrates how the logistic function may be used to 

approximate the unit step function used for decision-making 

in reproduction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The unit step and the logistic functions 

 

Following this we may write: 
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this approximation of the exponential term we may replace 

the unit step function )(tr  with another continuous 

function g(t) where 
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which is not an impulsive function just at t=1 rather a 

continuous function as shown in Figure 3. Higher value of k 

will produce more effective result. Due to the presence of 

this function we see that  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.  Function r (t) and g(t) 
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θ
will be maximum at t=1 and decreases 

drastically when we move away from t=1 in both sides. 

 

So equation (7) is modified and becomes, 
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For ease of calculation we denote the term within the unit 

step function as dtvGM

t

1

0

1∫−= to obtain, 

2121
)1(2

2
).)((

−+
−=

tk
Muv θθ                      (10)                                          

Since
M

e
Mu

αα −∞→ +
=

1

1
Lt  )(  

 

We take a smaller value of α  for getting into the 

mathematical analysis (say 10=α ). Since, we have the 

region, under consideration with very low gradient and the 

velocity of the particle is low, (so product 11vG is also small 

enough), and the time interval of the integration is not too 

large (as the time domain under consideration is not large), 

so it is possible to write, by expanding the exponential part 

and neglecting the higher order terms 
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terms, )
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Now the equation given by (11) is true for all values 

possible values of t, so we can differentiate both sides of it 

with respect to t and get, 

dt

CMd
tk

v

tkdt

d

dt

d
v

dt

dv

)(

4

1
)1(

))1)(2(1((
)(

)()(

12

1

2

2
12

12
1

1
12

=−
−

+

−+
−

−−−
⇒

θθ

θθ

θθ
θθ

    (12)                                                                        

Now,
11

0

11 )(
)(

Gv
dt

dtGvd

dt

CMd

t

α

α

−=

−

=
∫

  

[By putting the expression for M and applying the  

Leibniz theorem for differentiating integrals] 

So from (12), we get, 
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Putting 1
1 v

dt

d
=

θ
 and 2

2 v
dt

d
=

θ
 after some further 

manipulations (where we need to cancel out )( 12 θθ − , 

which we can do as 0|| 12 →−θθ towards the end of 

reproduction but never 0|| 12 ≠−θθ  according to 

assumption (iii)), we get,  
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4. STABILITY ANALYSIS               
Now for gaining further mathematical insight we do some 
simplifications over equation (13). The effect of 

reproduction is mostly pronounced around 1=t , 

so 0)1( →−t . Thus we can neglect the first expression 

in Q , which contains )1( −t . Again we restrict our analysis 

to regions only where gradient is very low, i.e., 01 →G . So 

we can also neglect the second expression in Q , which 

contains 1G . Thus we get a simplified version of the 

acceleration of the first bacterium as, 
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Now we will be undertaking a state variable analysis, Let us 

assume, that 1x  and 2x  are two state variables (velocity 

and position of the second bacterium are assumed to remain 
unchanged during this analysis), where  
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This is a nonlinear system and we want to perform the 
stability analysis of the system in a small region (Figure 4) 
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[By expanding with Taylors series around the equilibrium 
point] 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 

Similarly, 
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Let,
*
11 xxp −=  and 

*
22 xxq −=  

dt

dx

dt

dp 1=⇒  and 
dt

dx

dt

dq 2=  

 
From (16), 
 

q
x

f
p

x

f

dt

dp

xx

xx

xx

xx
*
22

*
11

*
22

*
11 2

1

1

1

=

=

=

= ∂

∂
+

∂

∂
=     

[ 0),(),( *
2

*
12

*
2

*
11 == xxfxxf∵ ] 

q
x

f
p

x

f

dt

dq

xx

xx

xx

xx
*
22

*
11

*
22

*
11 2

2

1

2

=

=

=

= ∂

∂
+

∂

∂
=     

[ 0),(),( *
2

*
12

*
2

*
11 == xxfxxf∵ ] 

 
Writing the above equations in a more compact form we get, 
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is the Jacobian matrix. If 1f and 2f  are given by equations 

(14) and (15), Then equation (18) becomes as, 
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which is a linear state space representation of the nonlinear 
reproduction system around the equilibrium point. 

Let,
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Both of the eigen values of this matrix are real and they are, 
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Now we are to determine 

when 0),(),( 212211 == xxfxxf , i.e., equilibrium 

values of the two state variables. 

We find that at 0*
2 =x is a solution at which the system is 

in equilibrium, as then the rate of change of both the state 
variables becomes zero. 

  When, 0*
2 =x , 01 =λ and 
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2
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2
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v

−
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θ
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For 02 <λ , (for system stability it is urgently required), we 

have two options,  

Either   ( 02 <v  and 
*
12 x>θ ) or   ( 02 >v  and 

*
12 x<θ ) 

But in any case 1λ  is zero, which ensures a constant 

component of the state variables even in the final stage. So 
to assure full stability, we must have  

Situation 1:   ( ε+=*
2x , 02 <v , and 

*
12 x>θ ) or       

Situation 2:   ( ε−=*
2x , 02 >v  and 

*
12 x<θ ) 

That means at equilibrium the first bacterium should have an 
infinitesimal amount of positive or negative velocity to 
ensure stability of this reproductive system. 
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Fig 4.  The region in which our stability analysis is 

valid. 
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Now situation 1 is true when the second bacterium is in the 
part of the fitness landscapes where the slope is positive and 
the situation 2 is valid where the second one is on negative 
sloped fitness landscape part [Since in the positive sloped 

part, velocity 2v  can never be positive and in the negative 

sloped part, velocity 2v can never be negative, as BFOA is a 

greedy search]. Case I corresponds to situation I and, case II 
corresponds to situation II. 

 

Case 1: Both bacteria are in the same slope of the fitness 

landscape (6(a) and 6(b)): 

In both the cases 
*

12 x>θ  ( 1x≅ ). Now we see that in 

Figure 6(a) second bacterium is eventually less fit and as a 
result of it first bacterium never undergoes reproduction 
towards the other one. So the only possible case of 
reproduction in this scenario is 6(b). 

 

Case 1: Both bacteria are in the opposite slope of the 

fitness landscape (6(c) and 6(d)): 

In both the cases 
*
12 x<θ  ( 1x≅ ). Now we see that in 6(c) 

second bacterium is eventually less fit and as a result of it 
first bacterium never undergoes reproduction towards the 
other one. So the only possible case of reproduction in this 
scenario is 6(d). 
So for stable and effective reproductive system bacterium 
must lie on fitness landscapes as shown in Figures 6(b) and 
6(d). 

 
 

5. CONCLUSIONS 
This paper presented a mathematical analysis of the 
reproduction operator of the bacterial foraging optimization 
algorithm. First the reproduction step dynamics is modeled 
and then it is represented in a state space model. Finally a 
stability analysis is performed on the derived model. On the 
basis of that analysis we try to derive some conclusions 
regarding the relative positions of the two bacteria in a one-
dimensional two bacterial system, for which a stable 
reproduction event can take place. Future research work may 
focus on deriving some control system model of the 
reproductive system and then further stability analysis can be 
undertaken. 
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