
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Tuning Meta-heuristics Using Multi-agent Learning in a
Scheduling System

Ivo Pereira1, Ana Madureira1, P. B. de Moura Oliveira2, and Ajith Abraham3,4

1GECAD - Knowledge Engineering and Decision Support Group, Institute of Engineering –
Polytechnic of Porto, Porto, Portugal, {iaspe,amd}@isep.ipp.pt

2INESC TEC - INESC Technology and Science, Department of Engineering, University of
Trás-os-Montes e Alto Douro, Vila Real, Portugal, oliveira@utad.pt

3Machine Intelligence Research Labs (MIR Labs). Scientific Network for Innovation and Re-
search Excellence, Auburn, USA

4IT4Innovations - Center of Excellence, VSB-Technical University of Ostrava, Czech Republic
ajith.abraham@ieee.org

Abstract. In complexity theory, scheduling problem is considered as a NP-
complete combinatorial optimization problem. Since Multi-Agent Systems
manage complex, dynamic and unpredictable environments, in this work they
are used to model a scheduling system subject to perturbations. Meta-heuristics
proved to be very useful in the resolution of NP-complete problems. However,
these techniques require extensive parameter tuning, which is a very hard and
time-consuming task to perform. Based on Multi-Agent Learning concepts, this
article propose a Case-based Reasoning module in order to solve the parameter-
tuning problem in a Multi-Agent Scheduling System. A computational study is
performed in order to evaluate the proposed CBR module performance.

Keywords: Case-based Reasoning, Learning, Metaheuristics, Parameter tuning,
Scheduling

1 Introduction

Recently, the interest in decentralized approaches for the resolution of complex re-
al world problems, like Scheduling, is gaining much attention due to its wide applica-
tions. Several of these approaches belong to Distributed Systems research area, where
a number of entities work together to solve problems in a cooperative way. In this
area, it is possible to emphasize Multi-Agent Systems (MAS), concerning the coordi-
nation of agent’s behaviors in order to share knowledge, abilities, and objectives, in
the resolution of complex problems. Due to the exponential growing of system's com-
plexity, it is important that MAS become more autonomous to deal with dynamism,
overloads and failures recovery.

Multi-Agent Systems typically operate in open, complex, dynamic, and unpredict-
able environments. Therefore, learning becomes crucial. Learning is a relevant area
from Artificial Intelligence (AI) as from human intelligence. Plaza et al. [1] defined
learning as “the process of improving individual performance, precision (or quality)

of solutions, efficiency (or speed) of finding solutions and scope of solvable prob-
lems”. Although this definition is very useful, it is a severe and constricted view of
learning. In a more general way, it is possible to define learning as the acquisition of
new knowledge or updating existing knowledge.

As per Alonso et al. [2], intelligence implies a certain degree of autonomy, which
requires the capacity of taking decisions autonomously. Thus, agents should have the
appropriate tools to take such decisions. In dynamic domains it is not possible to pre-
dict every situation that an agent can find, so it is necessary that agents have the abil-
ity to adapt to new situations. This is especially true in MAS, where in many cases the
global behavior emerges instead of being pre-defined. Consequently, learning is a
crucial component of autonomy and pro-activeness, which must be a study target of
agents and MAS [2].

The adaptation of ideas from different research areas, inspired from nature, led to
the development of Meta-Heuristics (MH), which are techniques aiming to solve
complex generic problems of combinatorial optimization, in which the scheduling
problem is included.

Meta-heuristics are very useful to achieve good solutions in reasonable execution
times. Sometimes they even obtain optimal solutions. However, to achieve near-
optimal solutions, it is required the appropriate tuning of parameters.

Parameter tuning of MH has a great influence in the effectiveness and efficiency of
the search process. The definition of the parameters is not obvious because they de-
pend on the problem and the time that the user has to solve the problem [3]. There-
fore, this paper proposes the use of a learning mechanism in order to perform the MH
parameter tuning in the resolution of the scheduling problem. Case-based Reasoning
(CBR) was chosen since it assumes that similar problems may require similar solu-
tions.

As a MAS is used to model a dynamic scheduling system, with agents representing
both tasks and resources, it is proposed that each resource agent have their own CBR
module, allowing a multi-apprentice learning. With this type of learning, agents learn
how to perform their own single-machine scheduling problem.

The proposed system adopts and provides parameter tuning of MH through CBR,
with the possibility that parameters can change in run-time. According to the current
situation being treated, the system must be able to define which MH should be used
and define the respective parameters. It is even possible to change from one MH to
another, according to current state and previous information, through learning and
experience.

The paper is organized as follows: Section 2 describes the scheduling problem and
Section 3 describes MH. Section 4 describes the Multi-Agent Learning and CBR is
explained along section 5. In Section 6, the implemented MAS is explained with CBR
integrated. A computational study is presented in Sections 7 and 8 and some conclu-
sions and future work are presented.

2 Scheduling Problem

Scheduling problems are present in a large set of domains, from transports to man-
ufacturing, computer environments, hospital settings, etc., most of them characterized
by a vast amount of uncertainty leading to a considerable dynamism in the systems.
Thereby, dynamic scheduling is getting an increased attention by researchers and
practitioners [4][5].

The scheduling problem treated in this paper is named Extended Job-Shop Sched-
uling Problem (EJSSP), described by A. Madureira in 2003 [6], and has some major
extensions and differences when compared to the classic JSSP, in order to better rep-
resent reality.

JSSP has a set of tasks processing in a set of machines, with each task following an
ordered list of operations, each one characterized by the respective processing time
and machine where is processed.

The main elements of JSSP problem are:

• a set of multi-operation jobs J1,…,Jn to be scheduled on a set of machines
M1,…,Mn
• dj represents the due date of job Jj
• tj represents the initial processing time of job Jj
• rj represents the release time of job Jj

EJSSP problems consist in JSSP problems with additional restrictions, to better
represent reality. Some of those restrictions are:

• Different release and due dates for each task
• Different priorities for each task
• Possibility that not every machine is used for all tasks
• A task can have more than one operation being processed in the same ma-
chine
• Two or more operations of the same task can be processed simultaneously
• Possibility of existence of alternatives machines, identical or not, for pro-
cessing the operations

In this work, we define a job as a manufacturing order for a final product that can
be Simple or Complex. It may be Simple Product, like a part, requiring a set of opera-
tions to be processed. Complex Products, require processing of several operations on
a number of parts followed by assembly operations at several stages.

For a better understanding the EJSSP, the reader may consider the following ex-
ample: a certain company produces some complex products. During the production
process, new orders may arrive, some orders can be canceled, and some orders may
be changed (due dates priorities, etc.). With the EJSSP modeling, it is possible to
specify different priorities for each order, change the due dates, etc. But the most
important contribution of this modeling strategy is that it is possible to have: i) many
machines producing the same pieces; ii) more than one piece of each job processed in
the same machine; iii) two or more pieces of the same job being processed at the same

time. The three last aforementioned aspects are an important enhancement, not con-
sidered in the classic JSSP definition.

Scheduling problems belongs to the NP-complete class [4]. Methods for their reso-
lution can be categorized in exact and approximation algorithms [5][6]. In the former,
an exhaustive solutions space search is made and it is ensured the optimal solution,
but on the other hand they are very time consuming. The latter includes heuristics and
MH and do not guarantee the optimal solution since they have the objective to find a
good solution in an acceptable amount of time. For this reason, they are used in this
work integrated with MAS.

3 Metaheuristics Parameter Tuning

Meta-heuristics have gained popularity over the past two decades in the resolution
of many types of real-life problems, including Scheduling, since they allow the reso-
lution of large dimension problems by obtaining satisfactory solutions in satisfactory
execution times. The term "meta-heuristic" was introduced by Fred W. Glover in
1986 [7].

These techniques have the objective of guiding and improving the search process
in a way to overcome local optimal solutions, which represent a limitation of Local
Search algorithm, and obtain solutions with satisfactory quality, very close to the
optimal solution, in reasonable execution times [3][6].

Meta-heuristics consist on iterative or recursive methods with the objective of ob-
taining solutions the closest as possible to the global optimum for a given problem.
Assuming that all solutions are interrelated, it is possible to obtain the set of solutions
for a given problem.

In this work some of the most well known MH are used [3][6][8]: Tabu Search,
Genetic Algorithms, Simulated Annealing, Ant Colony Optimization, and Particle
Swarm Optimization.

Tabu Search (TS) was introduced by Fred Glover [7] and consists in a Local
Search algorithm with the main objective to escape from local minimum. It uses a
tabu list to memorize the last solutions trajectory, prohibiting the moves to solutions
already visited in a short term memory.

Simulated Annealing (SA) was proposed by Kirkpatrick et al. [9] and Cerny [10].
It has connections to thermodynamics and metallurgy [11], and the original motiva-
tion is based on the process in which molten metal is slowly cooled, with a tendency
to solidify in a structure of minimum energy. This MH has a statistical basis and is
based on allowing the movement to a worst solution, with the objective to escape
from local optimum.

In beginning of 1970, John Holland, together with his students and colleagues, de-
veloped research and studies based on natural selection of species, reaching a formal
model designated by Genetic Algorithms (GA) [12]. In the 1980s, David Goldberg,
Holland’s student, implemented and published the first well successful applications of
these algorithms [13].

Proposed by Dorigo et al. [14], Ant Colony Optimization (ACO) is based on a be-
havior that allows ants to find the shortest path between a food source and the respec-
tive colony [7] Ants deposit in the ground a substance named pheromone, and when
choosing a path, they opt, with greater probability, by the one that have more quantity
of pheromone, which corresponds to the path followed by the higher number of ants.

Particle Swarm Optimization (PSO) was developed by James Kennedy and Russell
Eberhart [15] with the objective to simulate a simplified social system. The basic idea
was to demonstrate the behavior that flocks of birds or schools of fishes assume in
their random local trajectories, but globally determined. Flocks of birds or schools of
fishes make coordinated and synchronized movements as a way of finding food or as
a mechanism of self-defense.

As mentioned, MH can be used for the resolution of many kinds of problems.
However, to solve a specific problem it is necessary to choose a MH, which is consid-
ered a difficult task, requiring a study about the problem type and about the chosen
technique. Furthermore it is also necessary to define the respective parameters.

The parameter tuning of MH allows greater flexibility and robustness but requires
a careful initialization, since parameters have a great influence on the efficiency and
effectiveness of the search [3].

El-Ghazali Talbi [3] has identified two different approaches for MH parameter tun-
ing: offline and online (Fig. 1). In offline tuning, the values for the parameters are
defined before the execution of MH. In online tuning the parameters are controlled
and updated in a dynamic or adaptive way, throughout the execution of MH.

Usually, when using MH, practitioners tune one parameter at a time and its optimal
value is determined in an empiric way. However, this tuning strategy cannot guaran-
tee the optimal parameter configuration.

To overcome this problem, design of experiments (DOE) [16] is used. Neverthe-
less, before using DOE it is necessary to take into account diverse factors which rep-
resent the parameters variation and the different values for each parameter (that can
be quantitative and qualitative).

The greatest disadvantage about using DOE is the high computational cost when
there is a large number of parameters, and when the domains of the respective values
are also high since it is necessary to perform a large number of experiments [17]. To
overcome this disadvantage, it is possible to use, e.g., racing algorithms [18][19].

Fig. 1. Parameter tuning [3]

On the other hand, in Meta-optimization, (meta) heuristics can be used to find the
optimal parameters like in optimization problems. Meta-optimization consists in two
levels: meta-level and base level. In the meta-level, solutions represent the parameters
to optimize, such as the size of the tabu list in Tabu Search, the cooling rate in Simu-
lated Annealing, the crossover and mutation rates of a Genetic Algorithm, etc. At this
level, the objective function of a solution is the best solution found (or another per-
formance indicator) by the MH with the specified parameters. Thus, for each solution
in the meta-level there is an independent MH in the base level.

The drawback of offline approaches is the high computational cost, especially if
used for each instance of the problem. In fact, the optimum values for the parameters
depend on the problem to solve and on the different instances (e.g. larger instances
may require different parameter settings). Thus, to increase the effectiveness and ro-
bustness of offline approaches, these should be applied to all instances (or class of
instances) of a given problem [3].

Online approaches arise in order to try to achieve better results and they can be di-
vided in dynamic and adaptive approaches [3]. In dynamic approaches, changes in
parameter values are performed at random or deterministic ways, without taking into
account the search process. In adaptive approaches, parameter values change accord-
ing to the search process through the use of memory. A subclass, often used in the
evolutionary computation community, is identified as self-adaptive, consisting in
parameters evolution during the search. Therefore, the parameters are encoded and
are subject to change, such as solutions to the problem.

This problem of finding the most suitable parameter configuration is related with
the notion of hyper-heuristic [20][21][22]. Hyper-heuristic methods try to automate
the process of selecting, combining or adapting several heuristics (or MH) in order to
solve problems in an efficient manner.

The term “hyper-heuristic” was introduced in 1997 [23] to describe a procedure
combining different AI methods. This idea became pioneer in the 1960s with the
combination of scheduling rules [24][25] and has been used to solve many optimiza-

tion problems [21]. The term “hyper-heuristic” was independently used in 2000 [26]
to describe “heuristics that choose heuristics” in the context of combinatorial optimi-
zation. In this context, a hyper-heuristic is a high-level approach which, given a par-
ticular instance of the problem and a number of low-level heuristics, can choose and
apply an appropriate low level heuristic at each decision point [27][28].

In the literature it is possible to find a wide variety of hyper-heuristic approaches
using high-level methodologies along with a set of low level heuristics applied to
different optimization problems. However, there is no reason to limit the a high-level
strategy to a heuristic. In fact, the sophisticated knowledge-based techniques such as
CBR have been employed to this end with successful results for solving the university
timetables problem [29]. This led to a more general definition for the term "hyper-
heuristic", whose goal is to capture the idea of a method to automate the design of
heuristics and the selection process: “A hyper-heuristic is an automated methodology
for selecting or generating heuristics to solve hard computational search problems”
[20].

 The defining characteristic on hyper-heuristics research is that it investigates
methodologies operating within a search space of heuristics rather than directly on a
search space of problem solutions. This feature provides the potential to increase the
level of general research methods. Several approaches for hyper-heuristics have been
proposed that incorporate different research paradigms and machine learning [20].

The research on hyper-heuristics in based on the compromise between search
methodologies and machine learning. Machine learning is a well established field of
AI and its exploitation to automate the design of heuristics is still at the beginning, but
it is expected big developments in the future [20].

4 Multi-agent Learning

In AI, machine learning is a research area concerning the development of algo-
rithms and techniques in order to provide computers with learning faculties. Com-
monly accepted in the literature, machine learning algorithms and techniques can be
classified in three categories:

• Supervised learning (where data have labels or classes);
• Unsupervised learning (data have no labels);
• Reinforcement learning (where the objective is to maximize a reward).

Some authors refer another category, placed between Supervised and Unsupervised
learning, named Semi-Supervised learning, that uses both labeled and not labeled
data. It is also very common the reference to another category, known by Instance-
based Learning [30] or Non-Parametric Methods [31], where CBR can be included,
described in the next section.

It is possible to apply machine learning concepts to many research areas, including
natural language processing, pattern recognition, market analysis, DNA sequences
classification, speech and handwriting recognition, object recognition in computer
vision, game playing and robot locomotion.

Panait and Luke [32] have focused machine learning application to problems relat-
ed with MAS. They use machine learning in order to explore ways to automate the
inductive process, e.g., put a machine agent to find by itself how to solve a task or
minimize error. They have referred that machine learning is a popular approach for
the resolution of MAS problems because the complexity intrinsic to many of those
problems can make solutions prohibitively hard to obtain.

In the next subsections, it will be described four learning techniques used in MAS,
namely Reactive learning, Social learning, Team learning and Concurrent learning.

4.1 Reactive learning

In reactive systems, the cooperative behavior emerges from the interaction between
agents. Instead of implementing coordination protocols or providing complex recog-
nition models, it is assumed that agents work with value-based information (e.g. the
distance they should keep from neighbors) which produces the social behavior. Once
internal processing is avoided, these techniques allow MAS reacting to changes in an
efficient way [2].

As a collateral effect, agents do not know the domain, which is crucial to take deci-
sions in complex and dynamic scenarios. In this view, it is not possible to simulate
complex social interactions and, in order to have high-level behaviors, agents need to
summarize experiences in concepts. An entity that can conceptualize can also trans-
form experience in knowledge and guide the vital resources until necessary [2].

4.2 Social Learning

Social learning is composed by learning mechanisms arising from AI and Biology.
In persistent MAS, where new agents enter a world already populated with experi-

enced agents, a new agent starts with a blank state and has not had yet the opportunity
to learn about the environment. However, a new agent does not need to discover eve-
rything about the environment since it can benefit from the accumulated learning
from the experienced population of agents [2].

An important difference between artificial agents and animals is that, in the first, it
is possible to simulate a completely cooperative scenario, where exists a common
utility function. Even though cooperation occurs in many animal species, the possibil-
ity of conflicts emerging is always present, due to the competition in genes’ self-
replication of evolutionary process [2].

There are several different ways to an agent learn from other agents behaviors. De-
spite the existence of imitation (direct copy from other agents behaviors), this has
proved to be complex since it involves not only the behaviors’ understanding and
reproducing but also the understanding of the changes in the environment caused by
these behaviors [2].

4.3 Team Learning

In Team Learning it only exists an apprentice. However, it has the objective to dis-
cover a subset of behaviors for a team of agents, instead for a unique agent. It is a
simple approach to Multi-Agent learning because the apprentice can use machine
learning techniques, which avoid the difficulties emerging from the co-adaptation of
multiple agents in Concurrent Learning approaches. Another advantage in the using
of a unique apprentice agent is that it only cares about the team performance, and not
with itself. For this reason, Team learning approaches can ignore the inter-agent credit
assignment that is usually hard to determine [32].

However, Panait and Luke [32] also pointed some disadvantages in the use of
Team learning. The main problem refers to the large state space for the learning pro-
cess, which can be devastating for learning methods that explore the utility state space
(such as Reinforcement learning) but cannot affect so drastically techniques that ex-
plore the behaviors space (such as Evolutionary computing). A second disadvantage
refers to the learning algorithm centralization problem: every resource need to be
available in the same place where the program will be executed. This can be uncom-
fortable for domains where data are inherently distributed.

Team learning can be divided in homogeneous and heterogeneous [32]. Homoge-
neous apprentices develop an unique identical behavior for each agent, even if agents
are different. Heterogeneous apprentices must deal with a large search space, but with
the guarantee to get better solutions through agents’ specialization. The choice be-
tween approaches depends if experts are necessary in the team.

4.4 Concurrent Learning

The most common alternative to Team learning is Concurrent learning, where mul-
tiple apprentices try to improve parts from the team. Typically, each agent has its own
learning process to modify the behaviors [32].

The main difficulty subjacent to Concurrent learning is to know in which domains
it achieves better results when compared with Team learning. Jansen and Wiegand
[33] argue that Concurrent learning can perform better in domains where decomposi-
tion is possible and helpful (such as Scheduling), and when it is useful to focus each
sub-problem regardless others. This happens because Concurrent learning separates
the search space into smaller ones. If the problem can be decomposed, such that
agents’ individual behaviors are relatively disjoint, it can result in a significant reduc-
tion of the search space and computational complexity. Another advantage is that
decomposing the learning process into smaller pieces allows a greater flexibility using
computational resources in each process learning, since they can, at least partially, be
learned regardless others.

The main challenge of Concurrent learning consists in the adaption of each appren-
tice behaviors to the context of others, which its cannot control. In single agent sce-
narios, an apprentice explores his environment and improves his behavior. But things
are quite different when using multiple apprentices: while agents learn, they change
the behaviors, which can ruin the learned behaviors by other agents, making outdated

assumptions [34][35]. A simple approach to deal with this co-adaptation is to treat
other apprentices as part of the dynamic environment for which each apprentice must
adapt [36].

In this research, we propose a concurrent learning approach, in which several
agents learn about their internal behaviors and environment.

5 Case-based Reasoning

Case-Based Reasoning (CBR) is an Artificial Intelligence technique that aims to
solve new problems by using information about the resolution of previous similar
problems [37]. As previously described, CBR represents a method of ML Instance-
based Learning and uses the principle that similar problems may require similar solu-
tions [38] on a direct analogy to learning based on past experience.

CBR roots are found in the work of Roger Schank about dynamic memory and
how the memory of previous situations can affect problems' resolution and learning
processes [39]. There are also references about the study of analogical reasoning [40].

Fig. 2. The CBR cycle [42]

CYRUS system, developed by Janet Kolodner [37] was the first known CBR sys-
tem. It was based on Schank’s dynamic memory model [39] and, basically, consisted
of a question-answer system with knowledge about the different travels and meetings
of USA ex-Secretary of State Cyrus Vance. Another first system to use CBR was
PROTOS, developed by Bruce Porter et al. [41], which dealt with ML classification
problem.

The CBR cycle is illustrated in Fig. 2 and consists of four main phases [38][42]:

1. Retrieve the most similar case or cases
2. Reuse the retrieved information and knowledge
3. Revise the proposed solution
4. Retain the revised solution for future use

In CBR, previous solved cases and their solutions are memorized as cases in order
to be reused in the future [38]. These cases are stored in a repository named casebase.
Instead of defining a set of rules or general lines, a CBR system solves a new problem
by reusing similar cases that were previously solved [43].

A new case of the problem to be solved is used to retrieve an old case from the
casebase. In the Reusing phase, the retrieved case is analyzed in order to suggest a
solution for the resolution of the new case. In the Revising phase, this suggested solu-
tion is tested, for example, by executing it in the system, and repaired if it fails. In the
Retaining phase, the useful experience is retained for future use, and the casebase is
updated with the new learned case (or by modifying some existing cases).

In the Reusing phase, it is possible to reuse a solution or a method. In solution re-
use, the past solution is not directly copied to the new case, but there is some
knowledge allowing the previous solution to be transformed into the new case solu-
tion. In case of method reuse, it is observed how the problem was solved in the re-
trieved case, which has information about the method used for the problem resolution,
including an explanation about the used operators, sub-objectives considered, gener-
ated alternatives, failures, etc. The retrieved method is then reused to the new problem
resolution, in the new context.

The objective of Revising phase is to evaluate the retrieved solution. If this solu-
tion is well succeeded it is possible to learn about the success, otherwise the solution
is repaired using some problem domain’s specific knowledge. The evaluating task
applies the proposed solution in an execution environment and the result is evaluated.
This is usually a step outside the CBR, once the problem may be executed in an appli-
cation.

Finally, the Retaining phase consists in the integration of the useful information
about the new case resolution into the casebase. It is necessary to know which infor-
mation is important to retain, how to retain it, how to index the case for a future re-
trieve, and how to integrate the new case in the memory structure.

Burke et al. [44] referred that CBR is an appropriate approach for scheduling sys-
tems with expertise knowledge, and highlighted a research potential in dynamic
scheduling.

Generally, CBR applications for scheduling domain can be classified in three cate-
gories [43]:

• Algorithms reuse - assume that it is probable that an effective approach for a
specific problem’s resolution will also be effective in the resolution of a similar
problem. In these systems, a case consists in a representation of the problem and in
a known effective algorithm for its resolution. Schmidt [45] designed a CBR struc-
ture to choose the most appropriate method for the resolution of scheduling prob-
lems in production scheduling. Schirmer [46] implemented a CBR system for se-
lecting scheduling algorithms for the resolution of project scheduling problems. It
was experimentally shown that some scheduling algorithms work better than oth-
ers, in some instances of problems.
• Operators reuse - reuse the operators for the resolution of the new problem
[44]. A case describes a context in which a useful scheduling problem is used for
repairing/adapting a scheduling plan to improve its quality, in terms of constraints
satisfaction [38]. Burke et al. [44] have proposed a case-based hyper-heuristic to
solve timetabling problems. Beddoe et al. [38] have developed a CBR system to
solve nurse scheduling problems.
• Solutions reuse - it is used the whole or part of previous problems' solutions
to construct the solution of the new problem. A case contains the description of a
problem and its solution, or part of solution. This method was used for the resolu-
tion of manufacturing scheduling problems [47][48] and university courses timeta-
bling [44]. It was also used for constructing MH’ initial solutions, as Genetic Algo-
rithms [49] and Simulated Annealing [50].

6 Multi-agent Scheduling System

The developed MAS for the resolution of Scheduling problem consists in a hybrid
autonomous architecture [51]. As illustrated in Fig. 3, there are three kinds of agents.

The proposed MAS have agents representing jobs/tasks and agents representing re-
sources/machines. The system is able to find optimal or near optimal solutions
through the use of MH, dealing with dynamism (arriving of new jobs, cancelled jobs,
changing jobs attributes, etc.), change/adapt the parameters of the algorithm according
to the current situation, switch from one MH to another, and perform a coordination
between agents through cooperation or negotiation mechanisms.

Job agents process the necessary information about the respective job. They are re-
sponsible for the generation of the earliest and latest processing times on the respec-
tive job and automatically separate each job’s operation for the respective Resource
Agent.

Resource agents are responsible for scheduling the operations that require pro-
cessing in the machine supervised by the agent. These agents implement MH in order
to find the best possible single-machine schedules/plans of operations and communi-
cate those solutions to the AgentUI for later feasibility check.

Since it is impossible to predict each problem to treat, the system should be capa-
ble of learning about its experience during lifetime, as humans do. To perform this
learning mechanism, it is proposed the use of CBR within Resource agents.

UI Agent

Job Agent 1 Job Agent 2 Job Agent 3 Job Agent n

Resource
Agent 1

Resource
Agent 2

Resource
Agent 3

Resource
Agent n

Fig. 3. Multi-agent Scheduling System

6.1 CBR module

The proposed CBR approach [51] consists in retrieving the most similar case or
cases to the new problem, regardless the MH to be used, as well as its parameters. It is
important for the system to decide which technique and respective parameters may be
used, because not every MH is suitable to all types of problems.

The main objective of CBR module is to choose a MH to be used by the respective
Resource Agent in which the CBR is included. The secondary objective is to perform
the parameter tuning of MH, according to the problem to solve. Based on past experi-
ence, each case contains the MH and the respective parameters. If the parameters
were effective and efficient in the resolution of a similar case, then they have a great
probability to be effective and efficient in the resolution of the new problem. It is
possible to describe our CBR module as a hyper-heuristic approach but since it per-
forms a self-parameterization of MH it is more appropriate to see it as a parameter
tuning approach.

It is important to notice that, like previously described in Fig. 2, every new prob-
lem or perturbations occurred leads to a new case in the system, with the previous
most similar cases being retrieved from the casebase. After that, the better case is
reused, becoming a suggested solution. After the solution revision, the case is execut-
ed in the MAS. This revision is performed to allow escaping from local optimal solu-
tions and MH stagnation, since it is used some disturbance in the parameters of the
proposed solution. After the conclusion of the MAS execution, the case is confirmed
as a good solution, being retained on the database as a new learned case, for future
use.

Figure 4 illustrates the inclusion of CBR in the system. Each Resource Agent has
its own CBR module. With this approach, different MH may be chosen in the resolu-
tion of the same Job-Shop problem. This can be considered as an advantage because
the Resource Agents can have different number of operations to schedule. Some MH
are more suitable to schedule problems with large number of operations than others.

Fig. 4. CBR module within Resource agents

The most important part of a CBR module is its similarity measure because it de-
cides how much two cases are similar between each other. The similarity measure of
the proposed CBR module is very simple and is defined in equation (1).

 (1)

As previously mentioned, each Resource Agent has a number of operations to
schedule. This number of operations can be different, depending on the problem to
treat, and is enough to define a problem. The MH and the respective parameters may
be chosen according to the dimension of the problem to treat. So, with this similarity
measure it is possible to have a ratio between two cases. The similarity is a value in
the interval [0,1], whose limits correspond to non similar and completely similar cas-
es, respectively. If there are more than one case very similar to the problem to be
solved, the most effective and efficient case is reused.

If some perturbations occur in the problem, the MH and the parameters may
change, because a different problem may be solved. For example, if new jobs arrive
or if some jobs are canceled, the problem’s dimension is different and so other MH
and/or other parameters may be used. This decision is autonomously performed by the
CBR module in run time.

7 Computational Results

The main objective of this computational study is to analyze the integration of
CBR in an effective and efficient way, comparing the system’s performance with
CBR included versus the system’s performance before the integration of CBR. An-
other objective is to obtain some conclusions about the usage of MH in the resolution
of Job-Shop instances, after the integration of CBR.

For the computational study, all instances from OR-Library Job-Shop Scheduling
problems were used [52] (a total of 82 instances), proposed by Adams, Balas and
Zawack [53], Fisher and Thompson [54], Lawrence [55], Applegate and Cook [56],
Storer, Wu and Vaccari [57], and Yamada and Nakano [58]. These instances cover
problems with 10, 20, 30, and 50 jobs and they were executed five times (before and
after CBR integration).

The machine used for the computational study is a HP Z400 Workstation, with the
following main characteristics: Intel® Xeon® CPU W3565 @ 3.20 GHz, 6GB RAM,
Samsung HD103SJ disk with 1TB, and Windows 7, 64-bit.

To conclude about the effectiveness and efficiency of the proposed CBR module,
the average makespan (Cmax - conclusion time) and execution time were analyzed
(Fig. 5). About the effectiveness, the average makespan was improved in 15,85% of
the cases. This is considered a good improvement that can be better with the lifetime
of CBR module.

Although a new module has been integrated into the MAS, the average execution
times were improved in 2,44% of the cases when comparing to the previous obtained
results (Fig. 5). It was not expected to improve this performance measure but it we
can conclude that the parameters are becoming more efficient with the lifetime of
CBR module.

Fig. 5. Improvement of obtained average results (%)

Fig. 6. Improvement of obtained average Cmax results separated by instances dimension (%)

Figure 6 presents a detailed view about the improvement of average Cmax. For 10
jobs instances, 8,54% of the results were improved. For 20 jobs instances, 3,66%
results were improved. For 15 and 30 instances the results were improved only by
1,22% and 2,44% respectively. The obtained results for 50 jobs instances were not
improved at all.

In addition to the obtained conclusions about the effectiveness and efficiency of
CBR it is also possible to analyze the usage of MH. With this it is possible to know
which MH were used most. In a global perspective (Fig. 7), PSO was the most used
MH, in 36,96%, and then GA with 17,98%. TS and SA were used in 15,73% of the
instances. Finally, ACO was the less used with 14,61%.

Fig. 7. Global use of MH

Fig. 8. MH use for 10 jobs instances

Fig. 9. MH use for 15 jobs instances

Figure 8 presents the MH use for 10 jobs instances. TS and PSO were the most
used techniques in the smallest dimension problems’ instances. ACO was not used at
all.

Figure 9 presents the MH used for 15 jobs instances. GA was the most used MH
with 46,67%. TS and PSO were the other techniques used in 26,67% of the cases. SA
and ACO were not used in the resolution of this class of instances.

Fig. 10. MH use for 20 jobs instances

Fig. 11. MH use for 30 jobs instances

Only two MH were used in the resolution of 30 jobs instances, as shown in Fig. 11.
SA was the most used technique in 71,43% of the cases. GA was the other used MH, in
28,57%.

Finally, for 50 jobs instances, ACO was the most used MH in 80% of the cases.
The other used MH were SA and PSO in 10% of the cases each (Fig. 12).

Concluding, for small instances (10 and 15 jobs) TS, GA and PSO revealed to be
the most used, but ACO was not used at all. For 20 and 30 jobs instances PSO and SA
were the most used respectively. For large dimension instances ACO was the most
used.

Fig. 12. MH use for 50 jobs instances

8 Conclusions

In this paper the use of CBR was proposed in order to perform MH parameter tun-
ing in the resolution of Job-Shop scheduling problem.

The presented scheduling system consists in a MAS with different agents repre-
senting both jobs and resources. The proposed CBR module is included in resource
agents with the objective to chose the best MH and perform the respective parameter
tuning. The MH choice and parameters configuration is done based on past experi-
ence, since CBR assumes that similar cases may have similar solutions.

From the computational study presented it is possible to conclude that the system
became more effective in 15,85% of the cases and more efficient in 2,44%.

It was also possible to conclude that, in the resolution of academic Job-Shop in-
stances, PSO was, globally, the most used technique, in a global perspective. Howev-
er, in the resolution of small dimension instances TS revealed to be the most used, and
in the resolution of very large dimension instances ACO was the most used.

For future work we intend to do more experiments with the CBR module. It is ex-
pected that the effectiveness and efficiency of CBR improves during the lifetime.

Acknowledgments
This work is supported by FEDER Funds through the “Programa Operacional Fac-
tores de Competitividade - COMPETE” program and by National Funds through FCT
“Fundação para a Ciência e a Tecnologia” under the project: FCOMP-01-0124-
FEDER-PEst-OE/EEI/UI0760/2011 and PTDC/EME-GIN/109956/2009. The first
author would like also to thanks FCT for the Ph.D. scholarship
SFRH/BD/63404/2009. This work is partially supported in the framework of the IT4
Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 by opera-
tional programme ’Research and Development for Innovations’ funded by the Struc-

tural Funds of the European Union and state budget of the Czech Republic, EU.

References

1. E. Plaza, J. Arcos and F. Martin, Cooperative Case-Based Reasoning, in Weiss, G., ed. Dis-
tributed Artificial Intelligence Meets Machine Learning, Lecture Notes in Artificial Intelli-
gence., Springer, 1996.

2. E. Alonso, M. D'inverno, D. Kudenko, M. Luch, and J. Noble, Learning in Multi-agent Sys-
tems, The Knowledge Engineering Review, volume 16 (3), pp.277-84, 2001.

3. El-Ghazali Talbi, Metaheuristics - From Design to Implementation, Wiley, 2009.
4. K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling, John Wiley & Sons,

Inc., 2009.
5. M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Fourth Edition, Springer, 2012.
6. A. Madureira, Meta-heuristics application to scheduling in dynamic environments of dis-

crete manufacturing, Ph.D. thesis, University of Minho, Braga, Portugal, 2003, (in portu-
guese).

7. F. Glover, “Future paths for integer prog. and links to artificial intelligence”, Comp. & Ops.
Res., volume 5, pp.533-49, 1986.

8. C. Blum, and A. Roli, “Metaheuristics in combinatorial optimization: Overview and concep-
tual comparison”, ACM Comput. Surv. 35, September, pp.268-308, 2003.

9. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated annealing”, Sci-
ence, volume 220(4598), pp.671–680, 1983.

10. V. Cerny, “A thermodynamical approach to the travelling salesman problem: An efficient
simulation algorithm”, J. Optim. Theory Appl. 45, pp.41-51, 1985.

11. N. Metropolis, A.W. Rosenbluth, M.N Rosenbluth, A.H. Teller, and E. Teller, “Equations of
State Calculations by Fast Computing Machines”, Journal of Chemical Physics 21(6),
pp.1087–1092, 1953.

12. J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan, 1975.
13. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addi-

son-Wesley, 1989.
14. M. Dorigo, V. Maniezzo, and A. Colorni, The ant system: an autocatalytic optimizing,

Technical Report, TR91-016, Milano, 1991.
15. J. Kennedy, and R. Eberhart, “Particle swarm optimization”, in IEEE International Confer-

ence on Neural Networks, 1995.
16. G. Box, J.S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design, Innovation,

and Discovery. Wiley, 2005.
17. J.D. Schaffer, R.A. Caruana, L. Eshelman, and R. Das, “A study of control parameters af-

fecting online performance of genetic algorithms for function optimization”, in J. D. Schaf-
fer, editor, 3rd International Conference on Genetic Algorithms,Morgan Kaufman, San
Mateo, CA, 1989, pp. 51–60.

18. O. Maron and A. W. Moore, “Hoeffding races: Accelerating model selection search for clas-
sification and function approximation”, in Advances in Neural Information Processing Sys-
tems, Vol. 6. Morgan Kaufmann, San Francisco, CA, 1994, pp. 59–66.

19. M. Birattari, T. Stutzle, L. Paquete, and K. Varrentrapp, “A racing algorithm for configuring
metaheuristics”, in W. B. Langdon et al., editors, Proceedings of the Genetic and Evolution-

ary Computation Conference (GECCO’2002), Morgan Kaufmann, San Francisco, CA, 2002,
pp. 11–18.

20. E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, E., and J. Woodward, “A classification
of hyper-heuristics approaches”, Gendreau, M., Potvin, J. Y. (eds) Handbook of metaheuris-
tics (2nd edition), Springer, 2009.

21. Y. Hamadi, E. Monfroy and F. Saubion, “An Introduction to Autonomous Search”, Y.
Hamadi et al. (eds.) Autonomous Search, ISBN 978-3-642-21433-2, Springer, 2012.

22. P. Cowling, G. Kendall, and E. Soubeiga, “Hyperheuristics: a tool for rapid prototyping in
scheduling and optimisation”, in Applications of Evolutionary Computing, EvoWorkshops
2002, Lecture Notes in Computer Science, vol., 2279, pp, 1–10, Springer, 2002.

23. J. Denzinger, M. Fuchs, and M. Fuchs, “High performance ATP systems by combining sev-
eral AI methods”, in Proceedings of the Fifteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI 97), pp. 102–107, USA, 1997.

24. W. Crowston, F. Glover, G. Thompson, and J. Trawick, Probabilistic and parametric learn-
ing combinations of local job shop scheduling rules, Tech. rep., ONR Research Memoran-
dum No. 117, GSIA, Carnegie-Mellon University, Pittsburg, 1963.

25. H. Fisher and L. Thompson, “Probabilistic learning combinations of local job-shop schedul-
ing rules”, Industrial Scheduling, Prentice Hall, 1963.

26. P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach for scheduling a sales
summit”, in Selected Papers of the Third International Conference on the Practice And The-
ory of Automated Timetabling, PATAT 2000, Lecture Notes in Computer Science, pp.
176–190, Springer, 2000.

27. E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg, “Hyper-heuristics:
An emerging direction in modern search technology”, in F. Glover and G. Kochenberger
(eds.), Handbook of Metaheuristics, pp. 457–474, 2003.

28. P. Ross, “Hyper-heuristics”, in E. K. Burke and G. Kendall (eds.) Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques, chapter 17, pp.
529–556. Springer, Berlin, 2005.

29. E. Burke, S. Petrovic, and R. Qu, “Case based heuristic selection for timetabling problems”,
Journal of Scheduling, volume 9(2), pp. 115–132, 2006.

30. T. Mitchell, Machine Learning. McGraw-Hill Education, ISE Editions, 1997.
31. E. Alpaydin, Introduction to Machine Learning, Adaptive Computation and Machine Learn-

ing, The MIT Press, 2004.
32. L. Panait and S. Luke, Cooperative Multi-Agent Learning: The State of the Art, Autono-

mous Agents and Multi-Agent Systems, pp.387-434, 2005.
33. T. Jansen and R.P. Wiegand, Exploring the explorative advantage of the cooperative coevo-

lutionary (1+1) EA, in Cantúú-Paz, E. et al., eds. Genetic and Evolutionary Computation -
GECCO 2003, Chicago, Springer-Verlag, 2003.

34. T. Sandholm and R.H. Crites, On multiagent Q-learning in a semi-competitive domain, in
Adaption and Learning in Multi-Agent Systems, 1995.

35. M. Weinberg and J. Rosenschein, Best-response multiagent learning in non-stationary envi-
ronments, in AAMAS-2004 Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, 2004.

36. J. Schmidhuber and J. Zhao, Multi-agent learning with the success-story algorithm, in ECAI
Workshop LDAIS/ ICMAS Workshop LIOME, 1996.

37. J. Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers Inc, 1993.
38. G. Beddoe, S. Petrovic, and J. Li, “A hybrid metaheuristic case-based reasoning system for

nurse rostering”, Journal of Schedling, volume 12, number 2, April, pp. 99-119, 2009.

39. R. Schank, Dynamic memory; a theory of reminding and learning in computers and people.
Cambridge University Press, 1982.

40. [40] D. Gentner, “Structure mapping - a theorical framework for analogy. Cognitive Sci-
ence”, volume 7, pp. 155-170, 1983.

41. B. Porter and R. Bareiss, PROTOS: An experiment in knowledge acquisition for heuristic.
In Proceedings of the First International Meeting on Advances in Learning (IMAL), Les
Arcs, France, 1986.

42. A. Aamodt, and E. Plaza, “Case-Based Reasoning: Foundational Issues, Methodological
Variations, and System Approaches”, Artificial Intelligence Communications, volume 7, pp.
39-52, 1994.

43. S. Petrovic, Y. Yang, and M. Dror, “Case-based selection of initialisation heuristics for me-
taheuristic examination timetabling”, Expert Syst. Appl. 33, October, pp. 772-785, 2007.

44. E.K. Burke, B.L. MacCarthy, S. Petrovic, and R. Qu, Knowledge Discovery in a Hyper-
Heuristic for Course Timetabling Using Case-Based Reasoning. PATAT 2002, 2002.

45. G. Schmidt, Case-based reasoning for production scheduling. International Journal of Pro-
duction Economics, 56-57, 537-546, 1998.

46. A. Schirmer, Case-based reasoning and improved adaptive search for project scheduling.
Naval Research Logistics 47, 201-222, 2000.

47. J. Coello. and R. Santos, Integrating CBR and heuristic search for learning and reusing solu-
tions in real-time task scheduling. In Proceedings of 3rd International Conference on Case-
Based Reasoning, Germany, Springer-Verlag, 1999.

48. B. MacCarthy and P. Jou, Case-based reasoning in scheduling. In MK, K. & CS, W., eds.
Proceedings of the Symposium on Advanced Manufacturing Processes, Systems and Tech-
niques (AMPST96), MEP Publications Ltd, 1996.

49. S. Oman and P. Cunningham, Using case retrieval to seed genetic algorithms. International
Journal of Computational Intelligence and Applications, 1, 1, 71-82, 2001.

50. P. Cunningham and B. Smyth, Case-Based Reasoning in Scheduling: Reusing Solution
Components. The International Journal of Production Research, 35, 2947-2961, 1997.

51. I. Pereira, A. Madureira, and P. de Moura Oliveira, "Multi-apprentice learning for meta-
heuristics parameter tuning in a Multi Agent Scheduling System", Nature and Biologically
Inspired Computing (NaBIC), 2012 Fourth World Congress on, pp.31-36, 2012.

52. OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html
53. J. Adams, E. Balas, and D. Zawack, D., “The shifting bottleneck procedure for job shop

scheduling”, Management Science 34, pp. 391-401, 1988.
54. H. Fisher, and G.L. Thompson, “Probabilistic learning combinations of local job-shop

scheduling rules”, Muth, J.F. and Thompson, G.L. (eds.), Industrial Scheduling, Prentice
Hall, pp. 225-251, 1963.

55. S. Lawrence, “Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques” (Supplement), Carnegie-Mellon University, Pittsburgh,
1984.

56. D. Applegate, and W. Cook, “A computational study of the job-shop scheduling instance”,
ORSA Journal on Computing 3, 149-156, 1991.

57. R.H. Storer, S.D. Wu, and R. Vaccari, “New search spaces for sequencing instances with
application to job shop scheduling”, Management Science 38, 1495-1509, 1992.

58. T. Yamada, and R. Nakano, “A genetic algorithm applicable to large-scale job-shop instanc-
es”, R. Manner, B. Manderick (eds.), Parallel instance solving from nature 2, North-Holland,
281-290, 1992.

