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Abstract. In complexity theory, scheduling problem is considered as a NP-
complete combinatorial optimization problem.  Since Multi-Agent Systems 
manage complex, dynamic and unpredictable environments, in this work they 
are used to model a scheduling system subject to perturbations. Meta-heuristics 
proved to be very useful in the resolution of NP-complete problems. However, 
these techniques require extensive parameter tuning, which is a very hard and 
time-consuming task to perform. Based on Multi-Agent Learning concepts, this 
article propose a Case-based Reasoning module in order to solve the parameter-
tuning problem in a Multi-Agent Scheduling System. A computational study is 
performed in order to evaluate the proposed CBR module performance. 
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1 Introduction 

Recently, the interest in decentralized approaches for the resolution of complex re-
al world problems, like Scheduling, is gaining much attention due to its wide applica-
tions. Several of these approaches belong to Distributed Systems research area, where 
a number of entities work together to solve problems in a cooperative way. In this 
area, it is possible to emphasize Multi-Agent Systems (MAS), concerning the coordi-
nation of agent’s behaviors in order to share knowledge, abilities, and objectives, in 
the resolution of complex problems. Due to the exponential growing of system's com-
plexity, it is important that MAS become more autonomous to deal with dynamism, 
overloads and failures recovery. 

Multi-Agent Systems typically operate in open, complex, dynamic, and unpredict-
able environments. Therefore, learning becomes crucial. Learning is a relevant area 
from Artificial Intelligence (AI) as from human intelligence. Plaza et al. [1] defined 
learning as “the process of improving individual performance, precision (or quality) 



of solutions, efficiency (or speed) of finding solutions and scope of solvable prob-
lems”. Although this definition is very useful, it is a severe and constricted view of 
learning. In a more general way, it is possible to define learning as the acquisition of 
new knowledge or updating existing knowledge. 

As per Alonso et al. [2], intelligence implies a certain degree of autonomy, which 
requires the capacity of taking decisions autonomously. Thus, agents should have the 
appropriate tools to take such decisions. In dynamic domains it is not possible to pre-
dict every situation that an agent can find, so it is necessary that agents have the abil-
ity to adapt to new situations. This is especially true in MAS, where in many cases the 
global behavior emerges instead of being pre-defined. Consequently, learning is a 
crucial component of autonomy and pro-activeness, which must be a study target of 
agents and MAS [2]. 

The adaptation of ideas from different research areas, inspired from nature, led to 
the development of Meta-Heuristics (MH), which are techniques aiming to solve 
complex generic problems of combinatorial optimization, in which the scheduling 
problem is included.  

Meta-heuristics are very useful to achieve good solutions in reasonable execution 
times. Sometimes they even obtain optimal solutions. However, to achieve near-
optimal solutions, it is required the appropriate tuning of parameters. 

Parameter tuning of MH has a great influence in the effectiveness and efficiency of 
the search process. The definition of the parameters is not obvious because they de-
pend on the problem and the time that the user has to solve the problem [3]. There-
fore, this paper proposes the use of a learning mechanism in order to perform the MH 
parameter tuning in the resolution of the scheduling problem. Case-based Reasoning 
(CBR) was chosen since it assumes that similar problems may require similar solu-
tions. 

As a MAS is used to model a dynamic scheduling system, with agents representing 
both tasks and resources, it is proposed that each resource agent have their own CBR 
module, allowing a multi-apprentice learning. With this type of learning, agents learn 
how to perform their own single-machine scheduling problem. 

The proposed system adopts and provides parameter tuning of MH through CBR, 
with the possibility that parameters can change in run-time. According to the current 
situation being treated, the system must be able to define which MH should be used 
and define the respective parameters. It is even possible to change from one MH to 
another, according to current state and previous information, through learning and 
experience.   

The paper is organized as follows: Section 2 describes the scheduling problem and 
Section 3 describes MH. Section 4 describes the Multi-Agent Learning and CBR is 
explained along section 5. In Section 6, the implemented MAS is explained with CBR 
integrated. A computational study is presented in Sections 7 and 8 and some conclu-
sions and future work are presented. 



2 Scheduling Problem 

Scheduling problems are present in a large set of domains, from transports to man-
ufacturing, computer environments, hospital settings, etc., most of them characterized 
by a vast amount of uncertainty leading to a considerable dynamism in the systems. 
Thereby, dynamic scheduling is getting an increased attention by researchers and 
practitioners [4][5]. 

The scheduling problem treated in this paper is named Extended Job-Shop Sched-
uling Problem (EJSSP), described by A. Madureira in 2003 [6], and has some major 
extensions and differences when compared to the classic JSSP, in order to better rep-
resent reality.  

JSSP has a set of tasks processing in a set of machines, with each task following an 
ordered list of operations, each one characterized by the respective processing time 
and machine where is processed.  

The main elements of JSSP problem are: 

• a set of multi-operation jobs J1,…,Jn to be scheduled on a set of machines 
M1,…,Mn 
• dj represents the due date of job Jj 
• tj represents the initial processing time of job Jj 
• rj represents the  release time of job Jj 

EJSSP problems consist in JSSP problems with additional restrictions, to better 
represent reality. Some of those restrictions are: 

• Different release and due dates for each task 
• Different priorities for each task 
• Possibility that not every machine is used for all tasks 
• A task can have more than one operation being processed in the same ma-
chine 
• Two or more operations of the same task can be processed simultaneously 
• Possibility of existence of alternatives machines, identical or not, for pro-
cessing the operations 

In this work, we define a job as a manufacturing order for a final product that can 
be Simple or Complex. It may be Simple Product, like a part, requiring a set of opera-
tions to be processed. Complex Products, require processing of several operations on 
a number of parts followed by assembly operations at several stages. 

For a better understanding the EJSSP, the reader may consider the following ex-
ample: a certain company produces some complex products. During the production 
process, new orders may arrive, some orders can be canceled, and some orders may 
be changed (due dates priorities, etc.). With the EJSSP modeling, it is possible to 
specify different priorities for each order, change the due dates, etc. But the most 
important contribution of this modeling strategy is that it is possible to have: i) many 
machines producing the same pieces; ii) more than one piece of each job processed in 
the same machine; iii) two or more pieces of the same job being processed at the same 



time. The three last aforementioned aspects are an important enhancement, not con-
sidered in the classic JSSP definition. 

Scheduling problems belongs to the NP-complete class [4]. Methods for their reso-
lution can be categorized in exact and approximation algorithms [5][6]. In the former, 
an exhaustive solutions space search is made and it is ensured the optimal solution, 
but on the other hand they are very time consuming. The latter includes heuristics and 
MH and do not guarantee the optimal solution since they have the objective to find a 
good solution in an acceptable amount of time. For this reason, they are used in this 
work integrated with MAS. 

3 Metaheuristics Parameter Tuning 

Meta-heuristics have gained popularity over the past two decades in the resolution 
of many types of real-life problems, including Scheduling, since they allow the reso-
lution of large dimension problems by obtaining satisfactory solutions in satisfactory 
execution times. The term "meta-heuristic" was introduced by Fred W. Glover in 
1986 [7].  

These techniques have the objective of guiding and improving the search process 
in a way to overcome local optimal solutions, which represent a limitation of Local 
Search algorithm, and obtain solutions with satisfactory quality, very close to the 
optimal solution, in reasonable execution times [3][6]. 

Meta-heuristics consist on iterative or recursive methods with the objective of ob-
taining solutions the closest as possible to the global optimum for a given problem. 
Assuming that all solutions are interrelated, it is possible to obtain the set of solutions 
for a given problem.  

In this work some of the most well known MH are used [3][6][8]: Tabu Search, 
Genetic Algorithms, Simulated Annealing, Ant Colony Optimization, and Particle 
Swarm Optimization. 

Tabu Search (TS) was introduced by Fred Glover [7] and consists in a Local 
Search algorithm with the main objective to escape from local minimum. It uses a 
tabu list to memorize the last solutions trajectory, prohibiting the moves to solutions 
already visited in a short term memory. 

Simulated Annealing (SA) was proposed by Kirkpatrick et al. [9] and Cerny [10]. 
It has connections to thermodynamics and metallurgy [11], and the original motiva-
tion is based on the process in which molten metal is slowly cooled, with a tendency 
to solidify in a structure of minimum energy. This MH has a statistical basis and is 
based on allowing the movement to a worst solution, with the objective to escape 
from local optimum.  

In beginning of 1970, John Holland, together with his students and colleagues, de-
veloped research and studies based on natural selection of species, reaching a formal 
model designated by Genetic Algorithms (GA) [12]. In the 1980s, David Goldberg, 
Holland’s student, implemented and published the first well successful applications of 
these algorithms [13].  



Proposed by Dorigo et al. [14], Ant Colony Optimization (ACO) is based on a be-
havior that allows ants to find the shortest path between a food source and the respec-
tive colony [7] Ants deposit in the ground a substance named pheromone, and when 
choosing a path, they opt, with greater probability, by the one that have more quantity 
of pheromone, which corresponds to the path followed by the higher number of ants.  

Particle Swarm Optimization (PSO) was developed by James Kennedy and Russell 
Eberhart [15] with the objective to simulate a simplified social system. The basic idea 
was to demonstrate the behavior that flocks of birds or schools of fishes assume in 
their random local trajectories, but globally determined. Flocks of birds or schools of 
fishes make coordinated and synchronized movements as a way of finding food or as 
a mechanism of self-defense.  

As mentioned, MH can be used for the resolution of many kinds of problems. 
However, to solve a specific problem it is necessary to choose a MH, which is consid-
ered a difficult task, requiring a study about the problem type and about the chosen 
technique. Furthermore it is also necessary to define the respective parameters. 

The parameter tuning of MH allows greater flexibility and robustness but requires 
a careful initialization, since parameters have a great influence on the efficiency and 
effectiveness of the search [3]. 

El-Ghazali Talbi [3] has identified two different approaches for MH parameter tun-
ing: offline and online (Fig. 1). In offline tuning, the values for the parameters are 
defined before the execution of MH. In online tuning the parameters are controlled 
and updated in a dynamic or adaptive way, throughout the execution of MH. 

Usually, when using MH, practitioners tune one parameter at a time and its optimal 
value is determined in an empiric way. However, this tuning strategy cannot guaran-
tee the optimal parameter configuration. 

To overcome this problem, design of experiments (DOE)  [16] is used. Neverthe-
less, before using DOE it is necessary to take into account diverse factors which rep-
resent the parameters variation and the different values for each parameter (that can 
be quantitative and qualitative). 

The greatest disadvantage about using DOE is the high computational cost when 
there is a large number of parameters, and when the domains of the respective values 
are also high since it is necessary to perform a large number of experiments [17]. To 
overcome this disadvantage, it is possible to use, e.g., racing algorithms [18][19]. 

 



 
Fig. 1. Parameter tuning [3] 

On the other hand, in Meta-optimization, (meta) heuristics can be used to find the 
optimal parameters like in optimization problems. Meta-optimization consists in two 
levels: meta-level and base level. In the meta-level, solutions represent the parameters 
to optimize, such as the size of the tabu list in Tabu Search, the cooling rate in Simu-
lated Annealing, the crossover and mutation rates of a Genetic Algorithm, etc. At this 
level, the objective function of a solution is the best solution found (or another per-
formance indicator) by the MH with the specified parameters. Thus, for each solution 
in the meta-level there is an independent MH in the base level. 

The drawback of offline approaches is the high computational cost, especially if 
used for each instance of the problem. In fact, the optimum values for the parameters 
depend on the problem to solve and on the different instances (e.g. larger instances 
may require different parameter settings). Thus, to increase the effectiveness and ro-
bustness of offline approaches, these should be applied to all instances (or class of 
instances) of a given problem [3]. 

Online approaches arise in order to try to achieve better results and they can be di-
vided in dynamic and adaptive approaches [3]. In dynamic approaches, changes in 
parameter values are performed at random or deterministic ways, without taking into 
account the search process. In adaptive approaches, parameter values change accord-
ing to the search process through the use of memory. A subclass, often used in the 
evolutionary computation community, is identified as self-adaptive, consisting in 
parameters evolution  during the search. Therefore, the parameters are encoded and 
are subject to change, such as solutions to the problem. 

This problem of finding the most suitable parameter configuration is related with 
the notion of hyper-heuristic [20][21][22]. Hyper-heuristic methods try to automate 
the process of selecting, combining or adapting several heuristics (or MH) in order to 
solve problems in an efficient manner.  

The term “hyper-heuristic” was introduced in 1997 [23] to describe a procedure 
combining different AI methods. This idea became pioneer in the 1960s with the 
combination of scheduling rules [24][25] and has been used to solve many optimiza-



tion problems [21]. The term “hyper-heuristic” was independently used in 2000 [26] 
to describe “heuristics that choose heuristics” in the context of combinatorial optimi-
zation. In this context, a hyper-heuristic is a high-level approach which, given a par-
ticular instance of the problem and a number of low-level heuristics, can choose and 
apply an appropriate low level heuristic at each decision point [27][28].  

In the literature it is possible to find a wide variety of hyper-heuristic approaches 
using high-level methodologies along with a set of low level heuristics applied to 
different optimization problems. However, there is no reason to limit the a high-level 
strategy to a heuristic. In fact, the sophisticated knowledge-based techniques such as 
CBR have been employed to this end with successful results for solving the university 
timetables problem [29]. This led to a more general definition for the term "hyper-
heuristic", whose goal is to capture the idea of a method to automate the design of 
heuristics and the selection process: “A hyper-heuristic is an automated methodology 
for selecting or generating heuristics to solve hard computational search problems” 
[20]. 

 The defining characteristic on hyper-heuristics research is that it investigates 
methodologies operating within a search space of heuristics rather than directly on a 
search space of problem solutions. This feature provides the potential to increase the 
level of general research methods. Several approaches for hyper-heuristics have been 
proposed that incorporate different research paradigms and machine learning [20]. 

The research on hyper-heuristics in based on the compromise between search 
methodologies and machine learning. Machine learning is a well established field of 
AI and its exploitation to automate the design of heuristics is still at the beginning, but 
it is expected big developments in the future [20]. 

4 Multi-agent Learning 

In AI, machine learning is a research area concerning the development of algo-
rithms and techniques in order to provide computers with learning faculties. Com-
monly accepted in the literature, machine learning algorithms and techniques can be 
classified in three categories: 

• Supervised learning (where data have labels or classes); 
• Unsupervised learning (data have no labels); 
• Reinforcement learning (where the objective is to maximize a reward). 

Some authors refer another category, placed between Supervised and Unsupervised 
learning, named Semi-Supervised learning, that uses both labeled and not labeled 
data. It is also very common the reference to another category, known by Instance-
based Learning [30] or Non-Parametric Methods [31], where CBR can be included, 
described in the next section. 

It is possible to apply machine learning concepts to many research areas, including 
natural language processing, pattern recognition, market analysis, DNA sequences 
classification, speech and handwriting recognition, object recognition in computer 
vision, game playing and robot locomotion. 



Panait and Luke [32] have focused machine learning application to problems relat-
ed with MAS. They use machine learning in order to explore ways to automate the 
inductive process, e.g., put a machine agent to find by itself how to solve a task or 
minimize error. They have referred that machine learning is a popular approach for 
the resolution of MAS problems because the complexity intrinsic to many of those 
problems can make solutions prohibitively hard to obtain.  

In the next subsections, it will be described four learning techniques used in MAS, 
namely Reactive learning, Social learning, Team learning and Concurrent learning. 

4.1 Reactive learning 

In reactive systems, the cooperative behavior emerges from the interaction between 
agents. Instead of implementing coordination protocols or providing complex recog-
nition models, it is assumed that agents work with value-based information (e.g. the 
distance they should keep from neighbors) which produces the social behavior. Once 
internal processing is avoided, these techniques allow MAS reacting to changes in an 
efficient way [2].  

As a collateral effect, agents do not know the domain, which is crucial to take deci-
sions in complex and dynamic scenarios. In this view, it is not possible to simulate 
complex social interactions and, in order to have high-level behaviors, agents need to 
summarize experiences in concepts. An entity that can conceptualize can also trans-
form experience in knowledge and guide the vital resources until necessary [2]. 

4.2 Social Learning 

Social learning is composed by learning mechanisms arising from AI and Biology. 
In persistent MAS, where new agents enter a world already populated with experi-

enced agents, a new agent starts with a blank state and has not had yet the opportunity 
to learn about the environment. However, a new agent does not need to discover eve-
rything about the environment since it can benefit from the accumulated learning 
from the experienced population of agents [2]. 

An important difference between artificial agents and animals is that, in the first, it 
is possible to simulate a completely cooperative scenario, where exists a common 
utility function. Even though cooperation occurs in many animal species, the possibil-
ity of conflicts emerging is always present, due to the competition in genes’ self-
replication of evolutionary process [2].  

There are several different ways to an agent learn from other agents behaviors. De-
spite the existence of imitation (direct copy from other agents behaviors), this has 
proved to be complex since it involves not only the behaviors’ understanding and 
reproducing but also the understanding of the changes in the environment caused by 
these behaviors [2]. 



4.3 Team Learning 

In Team Learning it only exists an apprentice. However, it has the objective to dis-
cover a subset of behaviors for a team of agents, instead for a unique agent. It is a 
simple approach to Multi-Agent learning because the apprentice can use machine 
learning techniques, which avoid the difficulties emerging from the co-adaptation of 
multiple agents in Concurrent Learning approaches. Another advantage in the using 
of a unique apprentice agent is that it only cares about the team performance, and not 
with itself. For this reason, Team learning approaches can ignore the inter-agent credit 
assignment that is usually hard to determine [32]. 

However, Panait and Luke [32] also pointed some disadvantages in the use of 
Team learning. The main problem refers to the large state space for the learning pro-
cess, which can be devastating for learning methods that explore the utility state space 
(such as Reinforcement learning) but cannot affect so drastically techniques that ex-
plore the behaviors space (such as Evolutionary computing). A second disadvantage 
refers to the learning algorithm centralization problem: every resource need to be 
available in the same place where the program will be executed. This can be uncom-
fortable for domains where data are inherently distributed. 

Team learning can be divided in homogeneous and heterogeneous [32]. Homoge-
neous apprentices develop an unique identical behavior for each agent, even if agents 
are different. Heterogeneous apprentices must deal with a large search space, but with 
the guarantee to get better solutions through agents’ specialization. The choice be-
tween approaches depends if experts are necessary in the team. 

4.4 Concurrent Learning 

The most common alternative to Team learning is Concurrent learning, where mul-
tiple apprentices try to improve parts from the team. Typically, each agent has its own 
learning process to modify the behaviors [32].  

The main difficulty subjacent to Concurrent learning is to know in which domains 
it achieves better results when compared with Team learning. Jansen and Wiegand 
[33] argue that Concurrent learning can perform better in domains where decomposi-
tion is possible and helpful (such as Scheduling), and when it is useful to focus each 
sub-problem regardless others. This happens because Concurrent learning separates 
the search space into smaller ones. If the problem can be decomposed, such that 
agents’ individual behaviors are relatively disjoint, it can result in a significant reduc-
tion of the search space and computational complexity. Another advantage is that 
decomposing the learning process into smaller pieces allows a greater flexibility using 
computational resources in each process learning, since they can, at least partially, be 
learned regardless others. 

The main challenge of Concurrent learning consists in the adaption of each appren-
tice behaviors to the context of others, which its cannot control. In single agent sce-
narios, an apprentice explores his environment and improves his behavior. But things 
are quite different when using multiple apprentices: while agents learn, they change 
the behaviors, which can ruin the learned behaviors by other agents, making outdated 



assumptions [34][35]. A simple approach to deal with this co-adaptation is to treat 
other apprentices as part of the dynamic environment for which each apprentice must 
adapt [36]. 

In this research, we propose a concurrent learning approach, in which several 
agents learn about their internal behaviors and environment. 

5 Case-based Reasoning 

Case-Based Reasoning (CBR) is an Artificial Intelligence technique that aims to 
solve new problems by using information about the resolution of previous similar 
problems [37]. As previously described, CBR represents a method of ML Instance-
based Learning and uses the principle that similar problems may require similar solu-
tions [38] on a direct analogy to learning based on past experience.  

CBR roots are found in the work of Roger Schank about dynamic memory and 
how the memory of previous situations can affect problems' resolution and learning 
processes [39]. There are also references about the study of analogical reasoning [40]. 

 
Fig. 2. The CBR cycle [42] 



CYRUS system, developed by Janet Kolodner [37] was the first known CBR sys-
tem. It was based on Schank’s dynamic memory model [39] and, basically, consisted 
of a question-answer system with knowledge about the different travels and meetings 
of USA ex-Secretary of State Cyrus Vance. Another first system to use CBR was 
PROTOS, developed by Bruce Porter et al. [41], which dealt with ML classification 
problem. 

The CBR cycle is illustrated in Fig. 2 and consists of four main phases [38][42]: 

1. Retrieve the most similar case or cases 
2. Reuse the retrieved information and knowledge 
3. Revise the proposed solution 
4. Retain the revised solution for future use 

In CBR, previous solved cases and their solutions are memorized as cases in order 
to be reused in the future [38]. These cases are stored in a repository named casebase. 
Instead of defining a set of rules or general lines, a CBR system solves a new problem 
by reusing similar cases that were previously solved [43].  

A new case of the problem to be solved is used to retrieve an old case from the 
casebase. In the Reusing phase, the retrieved case is analyzed in order to suggest a 
solution for the resolution of the new case. In the Revising phase, this suggested solu-
tion is tested, for example, by executing it in the system, and repaired if it fails. In the 
Retaining phase, the useful experience is retained for future use, and the casebase is 
updated with the new learned case (or by modifying some existing cases).  

In the Reusing phase, it is possible to reuse a solution or a method. In solution re-
use, the past solution is not directly copied to the new case, but there is some 
knowledge allowing the previous solution to be transformed into the new case solu-
tion. In case of method reuse, it is observed how the problem was solved in the re-
trieved case, which has information about the method used for the problem resolution, 
including an explanation about the used operators, sub-objectives considered, gener-
ated alternatives, failures, etc. The retrieved method is then reused to the new problem 
resolution, in the new context. 

The objective of Revising phase is to evaluate the retrieved solution. If this solu-
tion is well succeeded it is possible to learn about the success, otherwise the solution 
is repaired using some problem domain’s specific knowledge. The evaluating task 
applies the proposed solution in an execution environment and the result is evaluated. 
This is usually a step outside the CBR, once the problem may be executed in an appli-
cation. 

Finally, the Retaining phase consists in the integration of the useful information 
about the new case resolution into the casebase. It is necessary to know which infor-
mation is important to retain, how to retain it, how to index the case for a future re-
trieve, and how to integrate the new case in the memory structure.  

Burke et al. [44] referred that CBR is an appropriate approach for scheduling sys-
tems with expertise knowledge, and highlighted a research potential in dynamic 
scheduling.  

Generally, CBR applications for scheduling domain can be classified in three cate-
gories [43]: 



• Algorithms reuse - assume that it is probable that an effective approach for a 
specific problem’s resolution will also be effective in the resolution of a similar 
problem. In these systems, a case consists in a representation of the problem and in 
a known effective algorithm for its resolution. Schmidt [45] designed a CBR struc-
ture to choose the most appropriate method for the resolution of scheduling prob-
lems in production scheduling. Schirmer [46] implemented a CBR system for se-
lecting scheduling algorithms for the resolution of project scheduling problems. It 
was experimentally shown that some scheduling algorithms work better than oth-
ers, in some instances of problems.  
• Operators reuse - reuse the operators for the resolution of the new problem 
[44]. A case describes a context in which a useful scheduling problem is used for 
repairing/adapting a scheduling plan to improve its quality, in terms of constraints 
satisfaction [38]. Burke et al. [44] have proposed a case-based hyper-heuristic to 
solve timetabling problems. Beddoe et al. [38] have developed a CBR system to 
solve nurse scheduling problems.  
• Solutions reuse -  it is used the whole or part of previous problems' solutions 
to construct the solution of the new problem. A case contains the description of a 
problem and its solution, or part of solution. This method was used for the resolu-
tion of manufacturing scheduling problems [47][48] and university courses timeta-
bling [44]. It was also used for constructing MH’ initial solutions, as Genetic Algo-
rithms [49] and Simulated Annealing [50]. 

6 Multi-agent Scheduling System 

The developed MAS for the resolution of Scheduling problem consists in a hybrid 
autonomous architecture [51]. As illustrated in Fig. 3, there are three kinds of agents.  

The proposed MAS have agents representing jobs/tasks and agents representing re-
sources/machines. The system is able to find optimal or near optimal solutions 
through the use of MH, dealing with dynamism (arriving of new jobs, cancelled jobs, 
changing jobs attributes, etc.), change/adapt the parameters of the algorithm according 
to the current situation, switch from one MH to another, and perform a coordination 
between agents through cooperation or negotiation mechanisms. 

Job agents process the necessary information about the respective job. They are re-
sponsible for the generation of the earliest and latest processing times on the respec-
tive job and automatically separate each job’s operation for the respective Resource 
Agent. 

Resource agents are responsible for scheduling the operations that require pro-
cessing in the machine supervised by the agent. These agents implement MH in order 
to find the best possible single-machine schedules/plans of operations and communi-
cate those solutions to the AgentUI for later feasibility check. 

Since it is impossible to predict each problem to treat, the system should be capa-
ble of learning about its experience during lifetime, as humans do. To perform this 
learning mechanism, it is proposed the use of CBR within Resource agents. 
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Fig. 3. Multi-agent Scheduling System 

6.1 CBR module 

The proposed CBR approach [51] consists in retrieving the most similar case or 
cases to the new problem, regardless the MH to be used, as well as its parameters. It is 
important for the system to decide which technique and respective parameters may be 
used, because not every MH is suitable to all types of problems.  

The main objective of CBR module is to choose a MH to be used by the respective 
Resource Agent in which the CBR is included. The secondary objective is to perform 
the parameter tuning of MH, according to the problem to solve. Based on past experi-
ence, each case contains the MH and the respective parameters. If the parameters 
were effective and efficient in the resolution of a similar case, then they have a great 
probability to be effective and efficient in the resolution of the new problem. It is 
possible to describe our CBR module as a hyper-heuristic approach but since it per-
forms a self-parameterization of MH it is more appropriate to see it as a parameter 
tuning approach. 

It is important to notice that, like previously described in Fig. 2, every new prob-
lem or perturbations occurred leads to a new case in the system, with the previous 
most similar cases being retrieved from the casebase. After that, the better case is 
reused, becoming a suggested solution. After the solution revision, the case is execut-
ed in the MAS. This revision is performed to allow escaping from local optimal solu-
tions and MH stagnation, since it is used some disturbance in the parameters of the 
proposed solution. After the conclusion of the MAS execution, the case is confirmed 
as a good solution, being retained on the database as a new learned case, for future 
use. 

Figure 4 illustrates the inclusion of CBR in the system. Each Resource Agent has 
its own CBR module. With this approach, different MH may be chosen in the resolu-
tion of the same Job-Shop problem. This can be considered as an advantage because 
the Resource Agents can have different number of operations to schedule. Some MH 
are more suitable to schedule problems with large number of operations than others. 



 
Fig. 4. CBR module within Resource agents 

The most important part of a CBR module is its similarity measure because it de-
cides how much two cases are similar between each other. The similarity measure of 
the proposed CBR module is very simple and is defined in equation (1). 

   (1) 

As previously mentioned, each Resource Agent has a number of operations to 
schedule. This number of operations can be different, depending on the problem to 
treat, and is enough to define a problem. The MH and the respective parameters may 
be chosen according to the dimension of the problem to treat. So, with this similarity 
measure it is possible to have a ratio between two cases. The similarity is a value in 
the interval [0,1], whose limits correspond to non similar and completely similar cas-
es, respectively. If there are more than one case very similar to the problem to be 
solved, the most effective and efficient case is reused. 

If some perturbations occur in the problem, the MH and the parameters may 
change, because a different problem may be solved. For example, if new jobs arrive 
or if some jobs are canceled, the problem’s dimension is different and so other MH 
and/or other parameters may be used. This decision is autonomously performed by the 
CBR module in run time. 

7 Computational Results 

The main objective of this computational study is to analyze the integration of 
CBR in an effective and efficient way, comparing the system’s performance with 
CBR included versus the system’s performance before the integration of CBR. An-
other objective is to obtain some conclusions about the usage of MH in the resolution 
of Job-Shop instances, after the integration of CBR. 



For the computational study, all instances from OR-Library Job-Shop Scheduling 
problems were used [52] (a total of 82 instances), proposed by Adams, Balas and 
Zawack [53], Fisher and Thompson [54], Lawrence [55], Applegate and Cook [56], 
Storer, Wu and Vaccari [57], and Yamada and Nakano [58]. These instances cover 
problems with 10, 20, 30, and 50 jobs and they were executed five times (before and 
after CBR integration).  

The machine used for the computational study is a HP Z400 Workstation, with the 
following main characteristics: Intel® Xeon® CPU W3565 @ 3.20 GHz, 6GB RAM, 
Samsung HD103SJ disk with 1TB, and Windows 7, 64-bit. 

To conclude about the effectiveness and efficiency of the proposed CBR module, 
the average makespan (Cmax - conclusion time) and execution time were analyzed 
(Fig. 5). About the effectiveness, the average makespan was improved in 15,85% of 
the cases. This is considered a good improvement that can be better with the lifetime 
of CBR module.  

Although a new module has been integrated into the MAS, the average execution 
times were improved in 2,44% of the cases when comparing to the previous obtained 
results (Fig. 5). It was not expected to improve this performance measure but it we 
can conclude that the parameters are becoming more efficient with the lifetime of 
CBR module. 

 

 
Fig. 5. Improvement of obtained average results (%) 



 
Fig. 6. Improvement of obtained average Cmax results separated by instances dimension (%) 

Figure 6 presents a detailed view about the improvement of average Cmax. For 10 
jobs instances, 8,54% of the results were improved. For 20 jobs instances, 3,66% 
results were improved. For 15 and 30 instances the results were improved only by 
1,22% and 2,44% respectively. The obtained results for 50 jobs instances were not 
improved at all. 

In addition to the obtained conclusions about the effectiveness and efficiency of 
CBR it is also possible to analyze the usage of MH. With this it is possible to know 
which MH were used most. In a global perspective (Fig. 7), PSO was the most used 
MH, in 36,96%, and then GA with 17,98%. TS and SA were used in 15,73% of the 
instances. Finally, ACO was the less used with 14,61%. 

 
Fig. 7. Global use of MH 



 
Fig. 8. MH use for 10 jobs instances 

 
Fig. 9. MH use for 15 jobs instances 

Figure 8 presents the MH use for 10 jobs instances. TS and PSO were the most 
used techniques in the smallest dimension problems’ instances. ACO was not used at 
all. 

Figure 9 presents the MH used for 15 jobs instances. GA was the most used MH 
with 46,67%. TS and PSO were the other techniques used in 26,67% of the cases. SA 
and ACO were not used in the resolution of this class of instances. 



 
Fig. 10. MH use for 20 jobs instances 

 
Fig. 11. MH use for 30 jobs instances 

Only two MH were used in the resolution of 30 jobs instances, as shown in Fig. 11. 
SA was the most used technique in 71,43% of the cases. GA was the other used MH, in 
28,57%. 

Finally, for 50 jobs instances, ACO was the most used MH in 80% of the cases. 
The other used MH were SA and PSO in 10% of the cases each (Fig. 12). 

Concluding, for small instances (10 and 15 jobs) TS, GA and PSO revealed to be 
the most used, but ACO was not used at all. For 20 and 30 jobs instances PSO and SA 
were the most used respectively. For large dimension instances ACO was the most 
used. 



 
Fig. 12. MH use for 50 jobs instances 

8 Conclusions 

In this paper the use of CBR was proposed in order to perform MH parameter tun-
ing in the resolution of Job-Shop scheduling problem.  

The presented scheduling system consists in a MAS with different agents repre-
senting both jobs and resources. The proposed CBR module is included in resource 
agents with the objective to chose the best MH and perform the respective parameter 
tuning. The MH choice and parameters configuration is done based on past experi-
ence, since CBR assumes that similar cases may have similar solutions. 

From the computational study presented it is possible to conclude that the system 
became more effective in 15,85% of the cases and more efficient in 2,44%.  

It was also possible to conclude that, in the resolution of academic Job-Shop in-
stances, PSO was, globally, the most used technique, in a global perspective. Howev-
er, in the resolution of small dimension instances TS revealed to be the most used, and 
in the resolution of very large dimension instances ACO was the most used. 

For future work we intend to do more experiments with the CBR module. It is ex-
pected that the effectiveness and efficiency of CBR improves during the lifetime. 
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