
Cyber Security Challenges: Designing Efficient Intrusion Detection
Systems and Antivirus Tools

Srinivas Mukkamala, Andrew Sung and Ajith Abraham*

Department of Computer Science, New Mexico Tech, USA
*School of Computer Science and Engineering, Chung-Ang University, Korea

Email: ajith.abraham@ieee.org,

Several information security techniques are available today to protect information and systems
against unauthorized use, duplication, alteration, destruction and virus attacks. Intrusion
detection a key component of information security (protect, detect and react) and network
defense, provides information on successful and unsuccessful attempts to compromise
information assurance (availability, integrity, and confidentiality). Intruders can broadly be
categorized into two types: external intruders, who are unauthorized users of information, and
systems they attack, and internal intruders, who have permission to access information and
systems with a few restrictions. In this chapter we first present the state-of-the-art of the
evolution of intrusion detection technology and address a few intrusion detection techniques and
IDS implementations. An overview of computer attack taxonomy and computer attack
demystification along with a few detection signatures is presented. Special emphasis is also
given to the current IDS limitations. Further we describe few obfuscation techniques applied to
recent viruses that were used to thwart commercial grade antivirus tools.

1. Introduction to Intrusion Detection Systems

Intrusion detection an important component of information security technology helps in
discovering, determining, and identifying unauthorized use, duplication, alteration, and
destruction of information and information systems. Intrusion detection relies on the assumption
that information and information systems under attack exhibit several distinguishable behavioral
patterns or characteristics to that of the normal ones. Though intrusion detection technology is
becoming ubiquitous in current network defense; it lacks basic definitions and mathematical
understanding. Intrusion detection being subjective; each Intrusion Detection System (IDS) has a
different classification and attack labeling mechanisms. It is most common for IDSs to alarm on
any set of known attack behaviors. In the due course of determining whether a particular activity
is normal or malicious, IDS fail to alarm an attack (false negative) or alarm normal activity as
malicious (false positive).

The most popular way to detect intrusions has been done by using audit data generated by
operating systems and by networks. Since almost all activities are logged on a system, it is
possible that a manual inspection of these logs would allow intrusions to be detected. It is
important to analyze the audit data even after an attack has occurred, for determining the extent
of damage occurred, this analysis helps in attack trace back and also helps in recording the attack
patterns for future prevention of such attacks. An intrusion detection system can be used to
analyze audit data for such insights. This makes intrusion detection system a valuable real-time
detection and prevention tool as well as a forensic analysis tool.

2. A Review on Intrusion Detection Systems

An intrusion is an activity or a sequence of activities that result in a compromise or intend to
compromise the aspects of information assurance. Intrusion detection is a security technology of
great significance to critical infrastructure protection that attempts to detect, and respond to
intrusions against information and information systems. IDSs that rely on audit trails for deciding
whether a particular activity is intrusive or not; compliments other security technologies
(firewalls, file integrity checkers, vulnerability scanners, and anti virus tools). IDS also provide
information for forensic analysis and to detect non-repudiation activities based on the audit trails
collected. IDS that detect intrusions based on deviations from normal to abnormal state using
user or systems profiles is defined as anomaly detection. Anomaly detection tends to detect novel
attacks with the expense of false positives. Signatures are a set of actions, conditions or activities,
when met indicate an intrusion. IDS that rely on signatures are defined as misuse or signature
based detection systems. Misuse detection systems tend to higher detection rate with the expense
of false negatives.

2.1 Intrusion Detection Models

Though there are several IDS implementations most of them share the common task of detecting
intrusions based on audit trails or system state. These components include data collection module,
analysis module, storage module, and response module. Most of the IDS are a software package
and/or hardware, or part of a larger system. IDSs are built with a set of components that together
define an IDS model. A generic model of IDS is illustrated in Figure 1.

Data collection module provides information to the rest of the system to decide whether a
particular activity is intrusive or not. Data collection module collects audit trails (user logs,
network trails, system calls, etc.) for the other IDS components to make decisions, with out this
module the IDS becomes un-functional. An important issue in the data collection module is audit
data reduction. Instead of passing the raw data in great detail to the analysis module to decide
whether a particular activity is malicious or normal, designers implement systems that eliminate
audit information believed to be unimportant for intrusion analysis. The goal of audit reduction
might not be limited to passing important, reduced or summarized audit trails to the analysis
module; they also help in reducing the complexity of the analysis module.

Analysis module analyses inputs (audit trails) form the data collection module. Large chunk of
the IDS research is concentrated on creating novel classifiers in terms of better IDS performance
(faster classification, low false alarms and higher accuracies). Several analysis techniques are
being proposed ranging from statistical analysis, pattern matching, machine learning, file
integrity checkers and artificial immune system methods. Analysis module helps in automated
analysis of data by reducing human intervention and speeds up the process of identifying
intrusions in real time.

Figure 1 Generic Intrusion Detection System Model

Storage module provides a mechanism to store data collected by data collection and analysis
modules in a secure fashion. Data stored might be used for building new signatures, updating
user and system profiles, forensics analysis, and identifying key audit information.

Response module can be designed in an active or a proactive mode. Most of the current IDS are
designed to be proactive; they set an alarm when an intrusion takes place. Leap forward
technology in the field of IDSs is designing and implementing them as reactive devices rather
than an aftermath device. Intrusion detection prevention systems (IDPS) not only spot intrusions
but also intercept and stop intrusions.

2.1.1 Signature Based or Misuse Intrusion Detection

The idea of misuse detection is to represent attacks in the form of a pattern or a signature so that
the same attack can be detected and prevented in future [1]. These systems can detect many or all
known attack patterns, but they are of little use for detecting naive attack methods. The main
issues of misuse detection is how to build signatures that include possible signatures of attacks
and all possible variations of the pertinent attack to avoid false negatives, and how to build
signatures that do not match non-intrusive activities to avoid false positives.

2.1.2 Anomaly Detection

The idea here is that if we can establish a normal activity profile for a system, in theory we can
flag all system states varying from the established profile as intrusion attempts [2]. However, if
the set of intrusive activities is not identical to the set of anomalous activities, the situation
becomes more interesting instead of being exactly the same, we find few interesting possibilities.

Data Collection
(Network trails,

system calls, etc.)

Response
(Reactive or
Proactive)

Analysis
(Statistical

analysis, pattern
matching, machine

learning)

Storage

Ethernet User logs System logs System calls

Anomalous activities that are not intrusive are flagged as intrusive, though they are false
positives. Actual intrusive activities that go undetected are called false negatives. This is a
serious issue, and is far more serious than the problem of false positives. One of the main issues
of anomaly detection systems is the selection of threshold levels so that neither of the above
problems is unreasonably magnified. Anomaly detection is usually computationally expensive
because of the overhead of keeping track of and possibly updating several system profiles.

3. Computer Attack Taxonomy

Good attack taxonomy makes it possible to classify individual attacks into groups that share
common properties. Taxonomy should hold the property; if classifying in one category excludes
all others because categories do not overlap. Good attack taxonomy should have the following
characteristics:

� Mutually exclusive: categories should not over lap. Classifying an attack into one category
excludes it from others.

� Exhaustive: an attack classified into a category includes all possibilities.

� Unambiguous: should be applied to all systems irrespective of what is used or who is
classifying. It should be clear and precise so that classification does not become uncertain.

� Repeatable: repeated applications result in the same classification, regardless of who is
classifying.

� Acceptable: should be logical and intuitive so that they become generally approved.

Network and computer elements identifies the specific elements of software, hardware, or
protocols where the attacks take place. The view of probe and Denial of Service (DoS)
characterization focuses attention on specific and tangible, as opposed to logical, elements of a
system, protocol, or data packet that allows the adversary to achieve their goal, of reconnaissance
and denial of some service. This entity may not be the service that the attacker wishes to
compromise, but is the element of the network which will allow their ultimate purpose to
succeed. Given that a probe and DoS attack can consist of multiple exploits, there exist multiple
targets spread out over time and space. With this view of the attack space, we recognize that
adversaries identify and attack real elements of networks and computers for compromise,
whether hardware, software, or firmware. Services mapped to Open Systems Interconnection
(OSI) and the TCP/IP models are given on Figure 2. The OSI Model includes two layers not
often distinguished in a communication process, i.e. the presentation and session layers, while
the TCP/IP Model only utilizes four levels of granularity. OSI Probe and DoS attacks view with
specific to network and computer elements are given in Figure 3.

Figure 2. Layered Approach to Network and Computer Elements

3.1. Probing

Probing is a class of attacks where an attacker scans a network to gather information or find
known vulnerabilities. An attacker with a map of machines and services that are available on a
network can use the information to look for exploits. There are different types of probes: some of
them abuse the computer’s legitimate features; some of them use social engineering techniques.
This class of attacks is the most commonly heard and requires very little technical expertise.
Different types of probe attacks are illustrated in Table 1 [3,4].

Application

Presentation

Session

Transport

Data Link

Physical

Applications

Transport Protocols

TCP
Transmission Control

Protocol
Connection Oriented

UDP
User Datagram Protocol

Connectionless

Network Network Protocols IP Internetworking Protocol (datagram)

Protocols defined by underlying networks
IEEE802.3 (Ethernet), IEEE 802.4 (Token Bus), IEEE802.5

(Token Bus), IEEE802.11 (Wireless).

FTP
File

Transfer
Protocol

SMTP
Simple Mail

Transfer
Protocol

DNS
Domain
Name

System

Telnet
Remote
Machine
Access

ARP
Address

Resolution
Protocol

RARP
Reverse

ARP

ICMP
Internet
Control
Message
Protocol

IGMP
Internet
Group

Management
Protocol

Figure 3. Layered Attack Views to Network and Computer Elements

i. Ipsweep: Probing attack is performed against all operating systems using ICMP service
where an adversary performs a surveillance sweep to determine which hosts are responding
on a network. Information obtained from surveillance is useful to an adversary in launching
automated attacks or in making the vulnerable hosts as stepping stones for future distributed
attacks. This attack helps the adversary identify active machines on the network and might
degrade services for legitimate users. Looking for multiple ping requests, destined for all
possible machines on a network, all coming form the same host can help detect this attack.

Application

Presentation

Session

Transport

Applications

FTP
FTP

Bounce
Attack

SMTP
Mail Bomb

DNS
DNS Cache
Poisoning

Telnet
Integrity and

Confidentiality
Attacks

Transport Protocols

TCP
SYN Flood

Land

UDP
UDP Flood

Echo-Chargen
Land

Data Link

Physical

Protocols defined by underlying networks
Sniffers (Active and Passive)

RTS/CTS Interference

Network Network Protocols

IP Internetworking Protocol (datagram)

IGMP
IGMP
Nuke
IGMP
Flood

ICMP
UDP Flood
ICMP Flood

Ping of Death
Smurf

IP Sweep

ARP
ARP Cache Poisoning

ARP Watch

ii. Mscan: Probing tool used to perform an attack against all operating systems using multiple
services; where an adversary uses both DNS zone transfers and/or brute force scanning of IP
addresses to locate machines, and look for vulnerabilities to launch future attacks. This
attack helps the adversary identify known vulnerabilities on the network and the host
machine. Looking for connection requests form an out side machine to vulnerable services
(netbios-ns, epmap, ms-sql-m, dameware, microsoft-ds, realsecure, domain, bind, imap, pop,
NFS, cgi-bin, open X servers) within a specified period of time, can help detect this attack.

iii. Nmap: General-purpose probing tool used to perform network scans against all operating
systems using multiple services with user specified time intervals; an adversary can specify
which services to scan for, how much time to wait between each service, and whether the
services should be scanned sequentially or in a random order. This attack helps the
adversary identify services running, operating system, and known vulnerabilities on the
network and the target machine. Looking for connection requests to multiple services within
a specific time window, can help detect this attack.

iv. SAINT: Security Administrator’s Integrated Network Tool is used to gather information
about remote hosts (all operating systems) using multiple services; an adversary uses a few
network services such as finger, ftp, tftp, statd, rpc, NIS, NFS and other relevant network
services. This attack helps the adversary identify network services running, system flaws,
and critical security flaws on the victims’ machine. Looking for connections requests to
specific network services form a machine other than an authorized machine within in a
specific time window, can help detect this attack.

v. Satan: Probing tool used to perform scans against all operating systems using a few network
services; where an adversary uses legitimate network services to gather information on
particular vulnerabilities on the victims’ machine. Looking for connections requests to
specific vulnerable network services form a machine other than an authorized machine
within in a specific time window, can help detect this attack.

vi. SYN Stealth Scan: Probing attack performed against all operating systems using multiple
TCP services where an adversary performs surveillance to determine which hosts are
responding to specific services on a network. Information obtained form surveillance is
useful to an adversary in launching automated attacks, in making the vulnerable hosts as
stepping stones for future distributed attacks or for launching future denial of service attacks.
This attack helps the adversary identify active machines on the network and might degrade
services for legitimate users. Looking for multiple half open TCP connection requests,
destined for all possible machines on a network, can help detect this attack.

vii. FIN Stealth Scan: Probing attack performed against all operating systems except Windows
95/NT; when SYN scanning isn’t clandestine enough. By theory closed ports are required to
reply to a probe packet with a RST, while open ports must ignore the packets. An adversary
abuses the feature; to determine what services are running on a network or a host system.
This scan bypasses the traditional firewalls and network filters. This attack helps the
adversary identify active services and the hosts’ operating system. Looking for connection
requests to closed services within in a specific time window, can help detect this attack.

viii. Ping Sweep: Snooping performed against all operating systems using ICMP where an
adversary performs a surveillance sweep to determine which hosts are responding on a
network. Information obtained from surveillance is useful to an adversary in launching

automated attacks or in making the vulnerable hosts as stepping stones for future distributed
attacks. This attack helps the adversary identify active machines on the network and might
degrade services for legitimate users. Ping sweep if repeated continuously or launched in a
coordinated fashion might result into a low level DoS attack. Looking for multiple ping
requests, destined for all possible machines on a network, all coming form the same host or
within a specific time window from multiple hosts, can help detect this attack.

ix. UDP scan: Probing attack performed against all operating systems using UDP where an
adversary sends 0 byte UDP packets to each UDP service on the target machine to determine
which services are running on the victims’ machine. This attack helps the adversary identify
vulnerable UDP services on victims’ network. This information is mostly used to launch
automated distributed and coordinated denial of service attacks. Looking for multiple UDP
packets with 0 bytes within a specific time window, can help detect this attack.

x. Null Scan: Probing attack performed against all operating systems except Window 95/NT
where an adversary turns off all flag options (FIN, URG, PUSH, etc.). This attack helps
identify victims’ operating system; by sending connection requests to services running on
the host machine. Looking for multiple connection requests with all the flags turned off
within a specific time window, destined for all possible machines on a network, can help
prevent this attack.

xi. IP scan: Snooping performed against all operating systems using raw IP packets without any
specified future protocol header. An adversary sends raw IP packets without any specific
future protocol header to each specific protocol on the victims’ machine. If an ICMP
message stating protocol unreachable is received, then it’s assumed that specific protocol is
not in use. This attack helps identify all the supported protocols on a victims’ network.
Looking for multiple connection requests without a specific service within a specific time,
can help detect this attack.

xii. ACK scan: Snooping attack performed to map firewall rule sets where an adversary sends
ACK packets (random acknowledgement/sequence numbers) to specific ports. If RST comes
back, the specified port is classified as “unfiltered”. If nothing comes back or an ICMP error
message comes, the specified port is classified as “filtered”. This attack helps identify
filtered services and a type of firewall a victims’ network has. Looking for Random ACK
packets, can help detect this attack.

xiii. Window scan: Probing attack performed against all operating systems using the
vulnerability in TCP window size reporting. This attack helps the adversary identify active
services as well as filtered services on a victims’ machine.

xiv. RCP scan: Snooping performed against all operating systems using multiple services to
identify active remote procedure call services. This attack helps the adversary identify active
remote procedure call services as well as the associated program and version numbers. This
information is mostly used to execute arbitrary code by the adversary on a victims’ machine.
Looking for multiple connection requests to specific remote procedure call services within a
specific time, can help detect this attack.

Table 1. Different Types of Probe Attacks

Attack Type Service Mechanism Effect of the attack

Ipsweep ICMP Abuse of feature Identifies active machines

Mscan Many Abuse of feature Looks for known vulnerabilities

Nmap Many Abuse of feature Identifies active ports on a
machine

Saint Many Abuse of feature Looks for known vulnerabilities

Satan Many Abuse of feature Looks for known Vulnerabilities

SYN Stealth Multiple Abuse of feature Identifies active machines

FIN Stealth Multiple Abuse of feature Identifies active services

Ping Sweep ICMP Abuse of feature Identifies active machines

UDP Scan Multiple Abuse of feature Identifies active UDP services

Null Scan Multiple Abuse of feature Identifies active services

IP Scan Multiple Abuse of feature Identifies active protocols

ACK Scan Multiple Abuse of feature

Identifies the firewall
mechanism

(stateful or simple network
filter)

Window Scan Multiple Mis-configuration Identifies active services

RCP Scan Multiple Abuse of feature Identifies active remote
procedure call ports (RPC)

3.2. Denial of Service Attacks

Denial of Service is a class of attacks where an attacker makes some computing or memory
resource too busy or too full to handle legitimate requests, thus denying legitimate users access
to a machine. There are different ways to launch DoS attacks: by abusing the computers
legitimate features; by targeting the implementations bugs; or by exploiting the system’s
misconfigurations. DoS attacks are classified based on the services that an attacker renders
unavailable to legitimate users. Some of the popular attack types are illustrated in Table 2 [3,4].

i. Apache2: DoS attack performed against an apache web server where an adversary submits
an http request with several http headers. In theory if the server receives too many of such
requests it will slow down the functionality of the web server and eventually crashes. This
attack denies the web service temporarily; the service can be regained automatically with
system administrator’s intervention.

ii. Back: DoS attack performed against an apache web server where an adversary submits an
URL request with several front slashes. While trying to process these requests, the server’s

service becomes unavailable for legitimate users. This attack denies the web service
temporarily; the service can be regained automatically.

iii. Land: DoS attack performed against TCP/IP implementations where an adversary sends a
spoofed SYN packet where the source and destination IP address are the same. In theory it’s
not possible to have the same destination address as the source address. The adversary targets
the badly configured networks and uses the innocent machines as zombies for performing
distributed attacks. This attack can be prevented by carefully configuring the network, which
prevents requests containing the same source and destination IP addresses.

iv. Mail bomb: DoS attack performed against the server where an adversary floods the mail
queue, possibly causing failure. The adversary tries to send thousands of mails to a single
user. This attack denies the service permanently. The service can be regained by the system
administrator intervention; blocking the mails coming from or to the same user within a short
period of time can prevent the attack.

v. SYN Flood (Neptune): DoS attack performed against every TCP/IP implementations where
an adversary utilizes the half open TCP connections to flood the data structure of half open
connections on the innocent server causing to deny access to legitimate requests. This attack
in some cases can cause permanent failure. The service can be regained automatically.
Looking for a number of simultaneous SYN packets coming form the same host or
unreachable host in a given short period of time can prevent this attack.

vi. Ping of Death (PoD): DoS attack performed against older versions of operating systems
where an adversary tries to send an oversized IP packet, and the system reacts in an
unpredictable manner, causing crashing, rebooting and even freezing in some cases. This
attack causes temporary failure of services. Looking for Internet Control Message Protocol
(ICMP) packets that are longer than 64000 bytes and blocking them is the way to prevent this
attack.

vii. Process Table: DoS attack performed against a variety of different Unix systems where an
adversary tries to allocate a new process for every incoming TCP/IP connection; when the
systems process table is filled completely, legitimate commands are prevented from being
executed. This attack causes temporary failure of services. Looking for large number of
active connections on a single port helps in preventing this attack.

viii. Smurf: DoS attack performed against all the systems connected to the Internet where an
adversary uses the ICMP echo request packets to IP broadcast addresses from remote
locations to deny services. This attack causes temporary denial of services and can be
automatically recovered. Looking for a large number of echo replies to the innocent machine
from different places without any echo request made by the innocent machine helps in
detecting this attack.

ix. Syslogd: DoS attack performed against Solaris servers where an adversary tries to kill the
syslogd service remotely. The adversary exploits the DNS lookup feature, if the source IP
address does match the DNS record then the syslogd crashes with a segmentation fault. This
attack permanently denies the services and can be recovered with the system administrator
intervention.

x. Teardrop: DoS attack performed against older versions of TCP/IP stack where an adversary
exploits the feature of IP fragment reassembly. This attack denies the services temporally.

xi. Udpstrom: DoS attack performed against networks where an adversary utilizes the UDP
service feature to cause congestion and slowdown. This attack denies the services
permanently and can be resumed with system administrator intervention. This attack can be
identified by looking for spoofed packets and inside network traffic.

Table 2. Denial of Service Attacks
Attack Type Service Mechanism Effect of the attack

Apache2 http Abuse Crashes httpd

Back http Abuse/Bug Slows down server response

Land http Bug Freezes the machine

Mail bomb N/A Abuse Annoyance

SYN Flood TCP Abuse Denies service on one or
more ports

Ping of Death Icmp Bug None

Process table TCP Abuse Denies new processes

Smurf Icmp Abuse Slows down the network

Syslogd Syslog Bug Kills the Syslogd

Teardrop N/A Bug Reboots the machine

Udpstrom Echo/ Chargen Abuse Slows down the network

4. Significant Feature Selection for Intrusion Detection

Feature selection and ranking is an important issue in intrusion detection [5,6]. Of the large
number of features that can be monitored for intrusion detection purpose, which are truly useful,
which are less significant, and which may be useless? The question is relevant because the
elimination of useless features (the so-called audit trail reduction) enhances the accuracy of
detection while speeding up the computation, thus improving the overall performance of an IDS.
In cases where there are no useless features, by concentrating on the most important ones we
may well improve the time performance of an IDS without affecting the accuracy of detection in
statistically significant ways. The feature ranking and selection problem for intrusion detection is
similar in nature to various engineering problems that are characterized by:

� Having a large number of input variables x = (x1, x2, …, xn) of varying degrees of importance

to the output y; i.e., some elements of x are essential, some are less important, some of them
may not be mutually independent, and some may be useless or irrelevant (in determining the
value of y)

� Lacking an analytical model that provides the basis for a mathematical formula that precisely
describes the input-output relationship, y = F (x)

� Having available a finite set of experimental data, based on which a model (e.g. neural
networks) can be built for simulation and prediction purposes

Due to the lack of an analytical model, one can only seek to determine the relative importance of
the input variables through empirical methods. A complete analysis would require examination
of all possibilities, e.g., taking two variables at a time to analyze their dependence or correlation,
then taking three at a time, etc. This, however, is both infeasible (requiring 2n experiments!) and
not infallible (since the available data may be of poor quality in sampling the whole input space).
Features are ranked based on their influence towards the final classification. Description of most
important features as ranked by three feature-ranking algorithms (support vector decision
function, linear genetic programming, and multivariate adaptive regression splines) is given in
Tables 3, 4, and 5 [5].

4.1 SVM Specific Feature Ranking Method

It is of great interest and use to find exactly which features underline the nature of connections of
various classes. This is precisely the goal of data visualization in data mining. The problem is
that the high-dimensionality of data makes it hard for human experts to gather any knowledge. If
we knew the key features, we could greatly reduce the dimensionality of the data and thus help
human experts become more efficient and productive in learning about network intrusions.

The information about which features play key roles and which are more neutral is “hidden” in
the SVM decision function. The decision function is formulated using linear kernels as follows
[7,8].

F(X) = <W, X> + b (1)

The point X is predicted to be in class A or “positive class” if the F(X) is positive, and class B or
“negative class” if F(X) is negative. We can rewrite the formula (2) to expand the dot product of
W and X.

F(X) = ΣWiXi + b (2)
One can see that the value of F(X) depends on the contribution of each factor, WiXi. Since Xi can
take only b ≥ ��0, the sign of Wi indicates whether the contribution is towards positive
classification or negative classification. The absolute size of Wi measures the strength of this
contribution. In other words if Wi is a large positive value, then ith feature is a key factor of
“positive class” or class A. Similarly if Wi is a large negative value then ith feature is a key factor
of the “negative class” or class B. Consequently the Wi, which is close to zero, either positive or
negative, carries little weight. The feature, which corresponds to this Wi , is said to be garbage
feature and removing it has very little effect on the classification. Having retrieved this
information directly from SVMs' decision function, we rank the Wi, from largest positive to
largest negative. This essentially provides the soft partitioning of the features into the key
features of class A, neutral features, and key features of class B. We say soft partitioning, as it
either depends on a threshold on the value of Wi, which will define the partitions, or the
proportions of the features, which we want to allocate to each of the partitions. Both the
threshold and the value of proportions can be set by the human expert.

Support Vector Decision Function Ranking:
The input ranking is done as follows: First the original data set is used for the training of the
classifier. Then the classifier’s decision function is used to rank the importance of the features.
The procedure is:

1. Calculate the weights from the support vector decision function;
2. Rank the importance of the features by the absolute values of the weights;

Table 3. Most Important Features Description as Ranked by SVDF

Ranking
Algorithm Feature Description

Normal

� destination bytes: number of bytes received by the source host form the
destination host

� dst_host_count: : number of connections from the same host to the
destination host during a specified time window

� logged in: binary decision (1 successfully logged in, 0 failed login)
� dst_host_same_srv_rate: % of connections to same service ports from a

destination host
� flag: normal or error status of the connection

Probe

� source bytes: number of bytes sent from the host system to the destination
system

� dst_host_srv_count: : number of connections from the same host with same
service to the destination host during a specified time window

� count: number of connections made to the same host system in a given
interval of time

� protocol type: type of protocol used to connect (e.g. tcp, udp, icmp, etc.)
� srv_count: : number of connections to the same service as the current

connection during a specified time window

DoS

� count: number of connections made to the same host system in a given
interval of time

� srv_count: : number of connections to the same service as the current
connection during a specified time window

� dst_host_srv_serror_rate: % of connections to the same service that have
SYN errors from a destination host

� serror_rate: % of connections that have SYN errors
� dst_host_same_src_port_rate: % of connections to same service ports from a

destination host

U2Su

� source bytes: number of bytes sent from the host system to the destination
system

� duration: length of the connection
� protocol type: type of protocol used to connect (e.g. tcp, udp, icmp, etc.)
� logged in: binary decision (1 successfully logged in, 0 failed login)
� flag: normal or error status of the connection

R2L

� dst_host_count: no of connections from the same host to the destination host
during a specified time window

� service: type of service used to connect (e.g. fingure, ftp, telnet, ssh, etc.)
� duration: length of the connection
� count: number of connections made to the same host system in a given

interval of time
� srv_count: : number of connections to the same service as the current

connection during a specified time window

Table 4. Most Important Features Description as Ranked by LGPs

Ranking
Algorithm Feature Description

Normal

� hot: number of “hot” indicators
� source bytes: number of bytes sent from the host system to the destination

system
� destination bytes: number of bytes received by the source host form the

destination host
� num_compromised: number of compromised conditions
� dst_host_rerror_rate: % of connections that have REJ errors from a

destination host

Probe

� dst_host_diff_srv_rate: % of connections to different services from a
destination host

� rerror_rate: % of connections that have REJ errors
� srv_diff_host_rate: % of connections that have same service to different

hosts
� logged in: binary decision (1 successfully logged in, 0 failed login)
� service: type of service used to connect (e.g. fingure, ftp, telnet, ssh, etc.)

DoS

� count: number of connections made to the same host system in a given
interval of time

� num_compromised: number of compromised conditions
� wrong fragments: number of wrong fragments
� land: binary decision (1 if connection is from/to the same host/port; 0

otherwise)
� logged in: binary decision (1 successfully logged in, 0 failed login)

U2Su

� root_shell: binary decision (1 if root shell is obtained; 0 otherwise)
� dst_host_srv_serror_rate: % of connections to the same service that have

SYN errors from a destination host
� num_file_creations: number of file creations
� serror_rate: % of connections that have SYN errors
� dst_host_same_src_port_rate: % of connections to same service ports

from a destination host

R2L

� guest login: binary decision (1 if the login is guest, 0 otherwise)
� num_file_access: number of operations on access control files
� destination bytes: number of bytes received by the source host form the

destination host
� num_failed_logins: number of failed login attempts
� logged in: binary decision (1 successfully logged in, 0 failed login)

4.2 Ranking Algorithm Using Linear Genetic Programming

The performance of each of the selected input feature subsets is measured by invoking a fitness
function with the correspondingly reduced feature space and training set and evaluating the
intrusion detection accuracy. Once the required number of iterations is completed, the evolved
high ranked programs are analyzed for how many times each input appears in a way that
contributes to the fitness of the programs that contain them. The best feature subset found is then

output as the recommended set of features to be used in the actual input for the classifier. In the
feature selection problem the main interest is in the representation of the space of all possible
subsets of the given input feature set. Each feature in the candidate feature set is considered as a
binary gene and each individual consists of fixed-length binary string representing some subset
of the given feature set. An individual of length d corresponds to a d-dimensional binary feature
vector Y, where each bit represents the elimination or inclusion of the associated feature. Then,
yi = 0 represents elimination and yi = 1 indicates inclusion of the ith feature. Fitness F of an
individual program p is calculated as the Mean Square Error (MSE) between the predicted output
(pred

ijO) and the desired output (des
ijO) for all n training samples and m outputs [9,10].

MCEwMSECE
n
w

OO
mn

pF des
ij

pred
ij

m

j

n

i

⋅+=+−
⋅

= ��
==

2

11
)(

1
)((3)

Classification Error (CE) is computed as the number of misclassifications. Mean Classification
Error (MCE) is added to the fitness function while its contribution is proscribed by an absolute
value of Weight (W).

4.3 Ranking Algorithm Using Multivariate Adaptive Regression Splines

Generalized Cross Validation (GCV) is an estimate of the actual cross-validation which involves
more computationally intensive goodness of fit measures. Along with the Multivariate Adaptive
Regression Splines (MARS) [11] procedure, a generalized cross-validation procedure is used to
determine the significant input features. Non-contributing input variables are thereby eliminated.

]
1

)(
[

1

1

2

�
= −

−
=

N

i

ii

N
k

xfy
N

GCV (4)

where N is the number of records and x and y are independent and dependent variables
respectively. k is the effective number of degrees of freedom whereby the GCV adds penalty for
adding more input variables to the model. The contribution of the input variables may be ranked
using the GCV with/without an input feature [12].

Table 5. Most Important Features Description as Ranked by MARS

Ranking
Algorithm Feature Description

Normal

� destination bytes: number of bytes received by the source host form the
destination host

� source bytes: number of bytes sent from the host system to the destination
system

� service: type of service used to connect (e.g. fingure, ftp, telnet, ssh, etc.)
� logged in: binary decision (1 successfully logged in, 0 failed login)
� hot: number of “hot” indicators

Probe

� dst_host_diff_srv_rate: % of connections to different services from a
destination host

� dst_host_srv_count: : number of connections from the same host with
same service to the destination host during a specified time window

� source bytes: number of bytes sent from the host system to the destination
system

� dst_host_same_srv_rate: % of connections to same service ports from a
destination host

� srv_count: : number of connections to the same service as the current
connection during a specified time window

DoS

� count: number of connections made to the same host system in a given
interval of time

� srv_count: : number of connections to the same service as the current
connection during a specified time window

� dst_host_srv_diff_host_rate: % of connections to the same service from
different hosts to a destination host

� source bytes: number of bytes sent from the host system to the destination
system

� destination bytes: number of bytes received by the source host form the
destination host

U2Su

� dst_host_srv_count: : number of connections from the same host with
same service to the destination host during a specified time window

� count: number of connections made to the same host system in a given
� duration: length of the connection
� srv_count: : number of connections to the same service as the current

connection during a specified time window
� dst_host_count: : number of connections from the same host to the

destination host during a specified time window

R2L

� srv_count: : number of connections to the same service as the current
connection during a specified time window

� count: number of connections made to the same host system in a given
� service: type of service used to connect (e.g. fingure, ftp, telnet, ssh, etc.)
� dst_host_srv_count: : number of connections from the same host with

same service to the destination host during a specified time window
� logged in: binary decision (1 successfully logged in, 0 failed login)

5. Attacks on Intrusion Detection Systems

IDS play a vital role in a security chain, by alerting site administrators with all attempts to breach
information security policy of an organization. In order for the IDS to be more useful in an
information security chain, information system policy administrators needs to be able to rely on
the information provided by the IDS; flawed systems not only provide false information about
the current security scenario but also generate large volumes of false alarms. Moreover, the value
of information from faulty systems is not only negated, but potentially misleading [13].

Most of the IDSs rely on several components (Data collection module, analysis module, storage
module, and response module) to decide whether a particular activity is normal or malicious.
Given the implications of malfunction of an IDS component, it is reasonable to assume that IDS
are themselves logical targets for attack. Most of the time information security technologies
become a primary target of a knowledgeable adversary. A potential adversary target’s IDS
components and can make the IDS absolute by disabling it or forcing it to provide false
information (false alarms).

5.1. Vulnerabilities in Intrusion Detection Systems

All the components of an IDS are vulnerable to multiple attacks and have unique security
implications on the functionality of IDS.

� Data collection module collects audit trails (user logs, network trails, system calls, etc.) for

the other IDS components to decide whether a particular activity is malicious or normal. If an
adversary attacks this module the IDS becomes un-functional.

� Analysis module analyses inputs (audit trails) form the data collection module to decide

whether a particular activity is normal or malicious. If an adversary knows the analysis
technique he can mislead and circumvent the IDS form being functional.

� Storage module provides a mechanism to store data collected by data collection and analysis

modules in a secure fashion. Data stored might be used for building new signatures, updating
user and system profiles, forensics analysis, and identifying key audit information. An
adversary that can compromise the storage module can prevent the IDS from logging the
attack information, insertion or deletion of audit trails. A more advanced adversary can also
change the profiles and intrusion detection signatures of the IDS.

� Response module provides a mechanism for aftermath operations. A compromise on a

response module will allow the adversary to continuously attack the system with out
generating an alarm. In case of reactive devices rather than an aftermath devices an adversary
can make the system deny legitimate activity and accept malicious activity.

5.2 Insertion and Evasion Attacks

Insertion attacks are caused by inserting malfunction packets that an end-system rejects but an
IDS accepts [13]. An adversary exploits this feature, by sending packets that an end-system will
reject but an IDS will still accept and inspect for malicious activity. Attacks range from insertion

of malfunction packets to data modification. Evasion attacks are caused by inserting legitimate
packets that an IDS rejects but an end-system accepts. An adversary exploits this feature by
sending packets that an end-system will accept but an IDS will reject. This will cause an IDS to
generate false alarms and deny legitimate packets.

� Bad Header Fields: End-systems reject packets that have invalid header fields. Network
peripheral devices do not route the packets with invalid header fields, but if the IDS is on the
same local network as the adversary’s its still subject to insertion attacks. Most of the IP
implementations do not process packets with a bad checksum. An IDS that does check not
check the packets for correct checksums is thus vulnerable to simple insertion attacks. Every
packet requires a time to live (TTL) field to be routed by the routers. The router decrements
the TTL value as it routes the packet to the next hop. An adversary can exploit this property
by specifying a time that is just enough for the packets to reach the IDS but not the end-
system.

� IP Options: Lack of proper knowledge of end-system implementations might lead an IDS to
take ambiguous actions. Parsing of IP options varies from system to system; an IDS requires
special processing capabilities for proper and correct interpretations. Most of the end-systems
drop the packets if the IP checksum is wrong. An IDS with out the knowledge of the end-
systems actions on wrong IP checksums, might lead it into an ambiguity, in taking a proper
action.

� Media access control (MAC) Address Spoofing: Most of the network peripheral devices do
not check for matching IP address and MAC address. Due to the use of complex dynamic
protocols like dynamic hyper control protocol (DHCP), virtual private network (VPNs),
network address translators (NAT), etc, it becomes even harder to verify the legitimacy. An
adversary who knows the MAC address of the IDS, sends packet to it. An IDS that does not
have the capability to check for legitimate IP address and MAC address pairs is subject to
simple insertion attacks.

5.3. Availability Attacks

Recent trend of the adversaries “if I can’t have it, nobody can” has changed the emphasis of
information assurance with respect to information security. Legitimate networks packets
consume various kinds of shared resources, such as bandwidth, memory, processing and
operating system structures. Most of the IDS components require system and network resources
to process the information passing by the network. An adversary identifies a few activities that
are resource intensive and targets the IDS with such activity making it un-functional. A few
possible scenarios of resource exhaustion are buffers exhausted, file descriptors exhausted,
address space exhausted, disk space exhausted, CPU cycle exhausted, and banc with exhausted.

Figure 4. Resource Exhaustion Scenarios of an IDS

6. Attacks on Antivirus Tools

Software security assurance and malware detection are important aspects of information system
assurance. Software obfuscation is a general technique that is used to protect the software from
reverse engineering techniques and is being used by malware writers to circumvent the current
detection mechanisms (Antivirus tools). Current static scanning techniques for malware
detection have serious limitations; on the other hand, sandbox testing does not provide a
complete solution either due to time constraints (e.g., time bombs cannot be detected before its
preset time expires). In this section, we describe a few obfuscation techniques applied to recent
viruses that were used to thwart commercial grade antivirus tools.

Malware Used for Analysis
Several recent viruses (executables) are being used for analysis. We describe the analysis of 4
viruses. The description of the virus is given based on the payload, enabling vulnerability,
propagation medium and the systems infected.

i. W32.Mydoom: A mass mailing worm and a blended back door that arrives with as an
attachment with file extensions .bat, .cmd, .exe, .pif, .scr or .zip [14]. The pay load performs
a denial of service against www.sco.com and creates a proxy server for remote access using
TCP ports 3127 through 3198. Infects all Windows systems.

ii. W32.Blaster: Exploits windows DCOM RPC vulnerability using TCP port 135. The pay
load launches a denial of service attack against windowsupdate.com, might systems to crash
and opens a hidden remote cmd.exe shell. Propagates via TCP ports 135, 4444 and UDP port
69. Infects only Windows 2000 and XP.

iii. W32.Beagle: A mass mailing worm blended with a back door. The worm contains large
scale email with extensions, .wab, .htm, .xml, .nch, .mmf, .cfg, .asp, and etc [14]. Uses its
own SMTP engine, TCP port 2745 to spread and also tries to spread via file sharing networks
like Kazza. Infects all Windows systems.

iv. Win32.Bika: According to virus library it is a harmless per-process memory resident
parasitic Win32 virus. It infects only Win32 applications [15]. The virus writes itself to the
end of the file while infecting. Once the host program is infected it starts the virus hooks “set

Buffers
Exhausted

Bandwidth
Exhausted

CPU Cycle
Exhausted

Disk Space
Exhausted

Address
Space

Exhausted

File
Descriptors
Exhausted

Resource Exhaustion

current directory” Win32 API functions (SetCurrentDirectoryA, SetCurrentDirectoryW) that
are imported by the host program and stays as a background thread of infected process, and
then infects files in the directories when current directory is being changed. The virus does
not manifest itself.

6.1 Obfuscation

In its simplest form obfuscation is obscuring some information such that another person cannot
construe its true meaning. This is certainly true for code obfuscation where the objective is to
hide the underlying logic of a program.

Code obfuscation has been compared to code optimization where code optimization is some
transformation that will minimize a program’s metric such as execution time or execution size
while code obfuscation has the additional requirement that the code transformation also
maximizes obscurity [16]. When we optimize for speed we generally try to take advantage of
hardware pipelines, memory buffers, and such on while leaving the program essentially the same.
Any optimization that changes the program’s functionality or logic cannot be applied blindly and
is generally avoided.

Obfuscation has also been applied to program watermarking and is a well known technique to
prevent reverse engineering [17]. In general, obfuscating a program to prevent reverse
engineering is similar to a classic cryptography game: you try and make reversing your
obfuscation hard enough such that it is impractical to attack. Given enough time and resources
any obfuscation can be reversed but as long as it takes 100,000 years it is considered pretty
secure. By obfuscating you can prevent another individual from gaining knowledge about your
program. With respect to malware, code obfuscation is an appealing technique to hinder
detection. A simple obfuscation technique may render a known virus completely invisible to
conventional scanners with very little effort on the part of the virus writer.

Applying an obfuscation transformation to a program has the advantage that it is essentially self-
decrypting encryption. The code is rendered incomprehensible while still remaining a viable
program.

Data obfuscation: changes the look of a program by modifying the constants or encapsulated
bits of data. An example would be to split a string hello world into smaller strings, such as he, ll,
and o. Another method would be to separate a Boolean variable into two integers and use
comparisons between the two to emulate the True / False properties of the original.

In general, complex data transformations require the addition of “helper code” if the original
functionality is to be maintained. In the example above, we would need to generate code to
concatenate the small strings together to get the original “hello world” before using it.

Control flow obfuscation: control flow transformations focus on obscuring how the program
runs. For example, inserting junk code into a program changes its appearance considerably but
does not change the logic. A more complex example would be to use global pointers for control
flow. If we used pointers p and q, and inserted statement like if (p == q) then it is nearly
impossible to determine if this statement is true or false using static analysis. Such a

combination of pointers and control flow statements is considered opaque because of the
difficulty inherent in pointer alias analysis.

This type of obfuscation is particularly appealing to malware authors because of its strength. We
see control flow transformations implemented in polymorphic and metamorphic engines where
the code changes with each host infected.

Other techniques: data and control flow are not the only techniques that can be used to obscure
a program’s meaning or prevent reverse engineering. Many software authors make use of
antidisassembly and antidebugging techniques to hinder analysis. In general, these are “tricks”
that slow down automated tools such as disassembles. Byte code scramblers are also used to
obfuscate strongly typed bytecode such as Java’s. All of these techniques, combined with a
generous helping of data and control flow obfuscation, help make code analysis exorbitantly
difficult.

6.1.1 Classification
For simplicity we have separated the obfuscation techniques into six general categories. Because
of the complexity in implementing and detecting pointer aliases we gave them their own
category. As a general rule the complexity and robustness of the technique increases the greater
the type. Straight control flow obfuscation is (in general) not as robust as both data and control
flow obfuscation together. These types assume a low level language such as x86 assembly.

Type 0: None
Program is left unmodified and functions exactly the same as before.

Type 1: Null operations
NOPs are inserted into the code. There is virtually no modification to data or control flow. An
example of a type 1 transformation is presented in Table 6 below. On the left we have the
original code and on the right we have the modified code with null operations inserted every 2nd
operation.

Table 6. Null operations obfuscation

Original Code After Transformation
mov eax, -44(ebp) mov eax, -44(ebp)
mov -44(ebp), ebx mov -44(ebp), ebx
sub 12, esp nop
lea -24(ebp) sub 12, esp
push eax lea -24(ebp)
 nop
 push Eax

Inserting null operations is essentially the same as inserting white space in a document: it may
take longer to read but the content is exactly the same.

Type 2: Data
Some data obfuscation transformation is applied, such as string splitting or variable type
replacement. For example, we could replace a Boolean variable with two integers. If they are

Null operation

Null operation

equal, the statement is true, otherwise it is false. In the example below Table 7, x is a Boolean
variable and a and b are integers. The code on the left is the original control flow and the code
on the right performs exactly the same but has a different signature.

Table 7. Null operations obfuscation
Original code and meaning Transformed code and meaning

cmpb 0, x if (x == true) mov a, eax if (a < b)
je .sub goto sub cmpl b, eax goto sub
 jge .sub

Type 3: Control flow
Control flow transformations are applied. Code is swapped around and jump instructions are
inserted. For example, we could copy the contents of a subroutine to another location in the file
and add jumps to and from the subroutine. The code would function exactly the same but look
quite different. In Table 8 below, three lines of code have been shifted to some location (denoted
as [shift]) and helper code has been inserted.

Table 8. Control flow obfuscation
Original code After transformation

cmp 24, eax jmp [shift]
jne .sub nop
sub 12, eax nop
push eax push eax
 … …
 cmp 24, eax
 jne .sub – [shift]
 sub 12, eax
 jmp -[shift]

Table 9. Combination of null operations and control flow obfuscation

Original code After transformation
cmp 24, eax jmp [shift]
jne .sub nop
sub 12, eax nop
push eax push eax
 … …

 mov 24, eax
 cmpl b, eax
 jle .dead_code
 jne .sub – [shift]
 sub 12, eax
 jmp -[shift]

Helper code

Helper code

Original execution
path resumes

Helper code

Original execution
path resumes

Helper code

Data obfuscation

Type 4: Combination of 2 and 3
We pull out all the stops and combine data and control flow transformations. At this level junk
code is inserted and variables can be completely replaced with large sections of needless code.
For example, we can modify all integer variables as above and transpose the program’s entry
point as in Table 9.

Type 5: Pointer aliasing
The final step is to introduce pointer aliasing. Variables are replaced with global pointers and
functions are referred to by arrays of function pointers. This type of transformation is relatively
easy to implement using high level languages that allow pointer references but tricky (at best)
using assembly languages. Pointer aliasing can be as simple as changing a = b into *a = **b or
as complex as converting all variables and functions into an array of pointers referenced by
pointers to pointers.

6.1 Obfuscation Used for Defeating Commercial Scanners
In our research, we discovered that most commercial virus scanners could be defeated with very
simple obfuscation techniques. For example, simple program entry point modifications
consisting of two extra jump instructions effectively defeated most scanners. Therefore, we only
used the bare minimum level of obfuscation needed to prevent detection. Our goal was to show
how trivial it is to modify recent malware to defeat existing scanning techniques using only the
compiled executable and a few tools.

The obfuscation process is presented in Figure 4. The binary code is disassembled into a more
readable format so that we may understand what the program is doing. Someone with
foreknowledge about the malware need not spend so much time analyzing the program. Once
we have the disassembled program and have had given it study we pick out an area to attack.
The first target when applying a control flow transformation is to attack the program’s entry
point but when using a data transformation we generally have to take a guess. We decide where
and what modifications need to be performed and change the binary file directly, using the
disassembled version as a guide or map. Once all modifications have been made, the file is
examined using the anti-virus scanners.

All variants with the exception of the MyDoom virus were generated using of the shelf hex
editing tools. We were fortunate enough to have a copy of the MyDoom.A source code and made
all our modifications using the Microsoft Visual development suite. The Hackman hex editing
utility was used to generate all other variants [18].

Table 10 shows the preliminary results of New Mexico Tech’s recent investigation of the
MyDoom worm and several other recent worms and viruses, using eight different (commercial)
scanners and proxy services. (���� indicates detection, ���� indicates failure to detect, and ? indicates
only an “alert”; all scanners used are most current and updated version) [19,20].

The obfuscation techniques used to produce the polymorphic versions of different malware
tested in the experiments include control flow modification (e.g. Mydoom V2, Beagle V2), data
segment modification (e.g., Mydoom V1, Beagle V1), and insertion of dead code (e.g., Bika V1).

Figure 4. Obfuscation Attack Process on Commercial Scanners

No

Malware PE binary code

Decompress

Program analysis

Obfuscation

Antivirus tools

Record malware
&

obfuscation type

Yes
Malware?

Table 10. Obfuscation Attacks on Commercial Scanners
 N M1 M2 D P K F A

W32.Mydoom.A � � � � � � � �

W32.Mydoom.A V1 � � � � � � � �

W32.Mydoom.A V2 � � � � � � � �

W32.Mydoom.A V3 � � � � � � � �

W32.Mydoom.A V4 � � � � � � � �

W32.Mydoom.A V5 � ? � � � � � �

W32.Mydoom.A V6 � � � � � � � �

W32.Mydoom.A V7 � � � � � � � �

W32.Bika � � � � � � � �

W32.Bika V1 � � � � � � � �

W32.Bika V2 � � � � � � � �

W32.Bika V3 � � � � � � � �

W32.Beagle.B � � � � � � � �

W32.Beagle.B V1 � � � � � � � �

W32.Beagle.B V2 � � � � � � � �

W32. Blaster.Worm � � � � � � � �

W32. Blaster.Worm V1 � � � � � � � �

W32. Blaster.Worm V2 � � � � � � � �

W32. Blaster.Worm V3 � � � � � � � �

W32. Blaster.Worm V4 � � � � � � � �

N – Norton, M1 – McAfee UNIX Scanner, M2 – McAfee, D – Dr. Web, P – Panda, K –
Kaspersky, F – F-Secure, A – Anti Ghostbusters

7.0. Conclusions

In this chapter we attempted to present the current cyber security challenges from an intrusion
detection system and antivirus tools perspective. The state-of-the-art of the evolution of intrusion

detection technology with an overview of computer attack taxonomy and computer attack
demystification along with a few detection signatures is presented.

Because malware is expected to become more lethal (“3rd generation” worms using multiple
attack vectors to exploit both known and unknown vulnerabilities) and spreads even faster
(attacking pre-scanned targets with lightning speed) in the future, it is important that the scanners
are capable of detecting polymorphic (obfuscated, or variant) versions of known malware. The
currently available scanners, however, are grossly inadequate since they are not able to detect
even slightly obfuscated versions of known malware, as shown in Table 3.

Acknowledgements

Authors would like to thank Professor Rao Vemuri for the editorial comments which improved
the presentation of this paper.

References
1. Kumar S., Spafford E. H. (1994) “An Application of Pattern Matching in Intrusion

Detection,” Technical Report CSD-TR-94-013. Purdue University

2. Denning D. (1987) “An Intrusion-Detection Model,” IEEE Transactions on Software
Engineering, SE-13 (2): 222-232.

3. Kendall K. (1998) “A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems”, Master's Thesis, Massachusetts Institute of Technology.

4. Webster S. E. (1998) “The Development and Analysis of Intrusion Detection Algorithms,”
M.S. Thesis, Massachusetts Institute of Technology.

5. Mukkamala S., and Sung. A. H. (2003) Feature Selection for Intrusion Detection Using
Neural Networks and Support Vector Machines. Journal of the Transportation Research
Board of the National Academics, Transportation Research Record No 1822; 1822: 33-39.

6. Mukkamala S., and Sung. A. H. (2003) Identifying Significant Features for Network
Forensic Analysis Using Artificial Intelligence Techniques. In International Journal on
Digital Evidence, IJDE; 1.

7. Vladimir V. N. (1995) The Nature of Statistical Learning Theory. Springer.

8. Joachims T. (2000) Making Large-Scale SVM Learning Practical. LS8-Report, University of
Dortmund.

9. Banzhaf. W, Nordin P., Keller E. R., and Francone F. D. (1998) Genetic Programming: An
Introduction on the Automatic Evolution of Computer Programs and its Applications.
Morgan Kaufmann Publishers, Inc.

10. Brameier. M, Banzhaf. W. (2001) A Comparison of Linear Genetic Programming and Neural
Networks in Medical Data Mining. IEEE Transactions on Evolutionary Computation; 5(1):
17-26.

11. Friedman J. H. (1991) Multivariate Adaptive Regression Splines. Annals of Statistics; 19: 1-
141.

12. Steinberg D., Colla. P. L., and Kerry. (1999) MARS User Guide. Salford Systems, San Diego.

13. Ptacek H. T., and Newsham N. T. (1998) Insertion, Evasion and Denial of Service: Eluding
Network Intrusion Detection. Secure Networks Inc.

14. Symantec Cooperation http://securityresponse.symantec.com/avcenter/ (accessed on
September 16, 2004)

15. Virus Library http://www.viruslibrary.com/virusinfo/Win32.Bika.htm (accessed on
September 16, 2004)

16. Collberg and Thomborson C. (2002) Watermarking, Tamper-Proofing, and Obfuscation -
Tools for Software Protection, IEEE Transactions on Software Engineering 28:8, 735-746

17. Krishnaswamy S., Kwon M., Ma D., Shao Q., and Zhang Y. (2000) Experience with
software watermarking, In the Proceedings of 16th Annual Computer Security Applications
Conference, pp. 308-316.

18. Hex H. (Editor), http://www.technologismiki.com/en/index-h.html.

19. Sung A. H., Xu J., Ramamurthy. K, Chavez P., Mukkamala S., Sulaiman T., Xie T. (2004)
Static Analyzer for Vicious Executables (SAVE). Presented in Work-in-progress Section of
IEEE Symposium on Security and Privacy.

20. Sung A. H., Xu J., Chavez P., Mukkamala S. (2004) Static Analyzer for Vicious Executables
(SAVE). In the Proceedings of 20th Annual Computer Security Applications Conference (To
appear).

