
Image Processing & Communications, vol. 11, no. 2, pp. 75-82 75

A VERY SIMPLE APPROACH FOR 3-D TO 2-D MAPPING

SANDIPAN DEY (1), AJITH ABRAHAM (2), SUGATA SANYAL (3)

(1) Anshin Soft ware Pvt. Ltd.

INFINITY, Tower - II, 10th Floor,

Plot No.- 43. Block - GP, Salt Lake Electronics Complex,

Sector - V, Kolkata - 700091

email: sandipand@anshinsoft.com

(2) IITA Professorship Program, School of Computer Science,

Yonsei University,

134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republic of Korea

email: ajith.abraham@ieee.org

(3) School of Technology & Computer Science

Tata Institute of Fundamental Research

Homi Bhabha Road, Mumbai - 400005, INDIA

email: sanyal@tifr.res.in

Abstract.

Many times we need to plot 3-D functions e.g., in

many scientific experiments. To plot this 3-D func-

tions on 2-D screen it requires some kind of map-

ping. Though OpenGL, DirectX etc 3-D rendering

libraries have made this job very simple, still these

libraries come with many complex pre-operations

that are simply not intended, also to integrate these

libraries with any kind of system is often a tough

trial. This article presents a very simple method of

mapping from 3-D to 2-D, that is free from any com-

plex pre-operation, also it will work with any graph-

ics system where we have some primitive 2-D graph-

ics function. Also we discuss the inverse transform

and how to do basic computer graphics transforma-

tions using our coordinate mapping system.



76 S. Dey, A. Abraham, S. Sanyal

1 Introduction

We have a functionf : R2 → R, and our intention

is to draw the function in 2-D plane. The function

z = f (x,y) is a 2-variable function and each tuple

(x,y, f (x,y)) ∈ R3. Let’s say we want to graphically

plot f onto computer screen using a primitive

graphics library (like Turbo C graphics), which

supports only the basicputPixel (to draw a pixel

in 2-D screen) -like 2-D rendering function, but no

3-D rendering; i.e., our graphics library’sputPixel’s

domain isR2 and it’s notR3.

Hence in order to draw the functionf using our

graphics library, we must design a coordinate con-

version system, that will provide us with a func-

tion that will take as input 3-tuples(x,y, f (x,y)) and

produce as output a 2-tuple(x
′
,y

′
) that can be di-

rectly passed to our graphics library to plot it onto

the screen, but with 3-D look & feel. As we dis-

cussed, it’s essential that we have a simple coordi-

nate mapping system that mapsR3 to R2 and still

gives us a hypothetical feeling of drawing 3-D func-

tions. It’s very easy to find such a map, i.e., a func-

tion h : R3 → R2 and in this paper we try to find such

a simple map.

2 Proposed approach

We have a pictorial representation (Fig.1) of our 3-D

to 2-D mapping system:

Fig. 1: Basic Model of a simple 3-D to 2-D mapping

system

But, how the function f should look like after

mapping and plotting? Here we simulate the 3-rd

coordinate (namelyZ) in our 2-D x− y plane. We

perform the logical to physical coordinate transform

and everything by the map function h, which will

basically turn out to be a 3× 2 matrix. The basic

mapping technique is shown in Fig. 2, which we are

shortly going to explain.

If we have our Origin 0 at(x0,y0) screen coordi-

nate, we have,

x
′
= x0 +y−x ·sin(θ)

y
′
= y0−z+x ·cos(θ)

(1)

i.e., we have our 3-D to 2-D transformation ma-

trix:

M3×2 =













−sin(θ) cos(θ)

1 0

0 −1













(2)



Image Processing & Communications, vol. 11, no. 2, pp. 75-82 77

Fig. 2: The basic coordinate mapping

Again we have shifting (change of origin) by the

matrix O2D = [x0,y0] so thatO2D + P3D ×M3×2 =

P2D, here× denotes matrix multiplication and+ de-

notes matrix addition, the 3-tupleP3D = [xyz], the

2-tupleP2D = [x′y′] i.e.

[

x0 y0

]

+
[

x y z
]

.













−sin(θ) cos(θ)

1 0

0 −1













=
[

x′ y′
]

(3)

By default we keep the angle between

X − axis & Z − axis = θ = π
4 , that one can

change if required, but with the following inequality

strictly satisfied: 0◦ < θ <
π
2 .

One can optionally use a compression factor to

control the dimension alongZ−axisby a compres-

sion factorρz and slightly modifying the equations:

x′ = x0 +y−x ·sin(θ)

y′ = y0−ρz ·z+x ·cos(θ)
(4)

Obviously, 0.0 < ρz ≤ 1.0

By default we takeρz = 1.0.

3 Sample output surfaces drawn

using the above mapping

Following surfaces (Fig. 3 and Fig. 4) are drawn

in Turbo C++ version 3.0 (BGI graphics) using the

above simple 3-D to 2-D mapping.

4 Inverse Transformation - Obtain-

ing original 3-D coordinates from

the transformed 2-D coordinates

Here, our transformation function (matrix) is de-

fined by Eqn. (1).



78 S. Dey, A. Abraham, S. Sanyal

Fig. 3: Sine function drawn in TurboC++ Version 3.0 (BGI Graphics) using the 3-D to 2-D mapping

Fig. 4: Sync function drawn in TurboC++ Version 3.0 (BGI Graphics) using the 3-D to 2-D mapping



Image Processing & Communications, vol. 11, no. 2, pp. 75-82 79

As we can see, it is impossible to re-convert and ob-

tain the original set of coordinates, namely(x,y,z),

because we have 3 unknowns and 2 equations. So,

in order to be able to get the original coordinates

back, we at least need to store 3 tuples as result of

the transformation, for instance,(x,y,z)→ (x′,y′,z),

thez-coordinate being stored only to get the inverse

transform(x′,y′,z) → (x,y,z) and the(x′,y′) pair is

used to plot the point. So, in order to get the inverse

transformation, we need to solve the equations for

x,y, since we already knowz, we have 2-equations

and 2 unknown variables:

y−x ·sin(θ) = x′−x0

x ·cos(θ) = y′−y0 +z
(5)

solving the above 2 equations we get,

x = (y′−y0 +z) ·sec(θ)

y = x′−x0 +(y′−y0 +z) · tan(θ)
(6)

Put it in another way, our transformation matrix

is a 3× 2 matrix and is done by Eqn. (2) since a

non-square matrix, no question of existence of its

inverse. So, in order to be able to get the inverse

transform as well, we need a 3×3 invertible square

matrix, e.g.,

M3×3 =













−sin(θ) cos(θ) 0

1 0 0

0 −1 1













(7)

with

Det(M3×3) = det













−sin(θ) cos(θ) 0

1 0 0

0 −1 1













=

= 1·

∣

∣

∣

∣

∣

∣

−sin(θ) cos(θ)

1 0

∣

∣

∣

∣

∣

∣

= −cos(θ) (8)

Now, 0 < θ <
π
2 , hence cos(θ) 6= 0, hence

Det(M3×3) 6= 0 and the inverse exists.

[

x0 y0 0
]

+
[

x y z
]

.











−sin(θ) cos(θ) 0

1 0 0

0 −1 1











=

= [x′ y′ z] (9)

But, we have,

Inv(M3×3) = (M3×3)
−1 =

Ad j(M3×3)

Det(M3×3)
(10)

Det(M3×3) 6= 0

and,

Ad j(M3×3) =













0 −cos(θ) 0

−1 −sin(θ) 0

−1 −sin(θ) −cos(θ)













(11)



80 S. Dey, A. Abraham, S. Sanyal

Hence,

Inv(M3×3) = (M3×3)
−1 =













0 1 0

sec(θ) tan(θ) 0

sec(θ) tan(θ) 1













(12)

here,cos(θ) 6= 0.

So, the inverse transform is:

[

x y z
]

.













−sin(θ) cos(θ) 0

1 0 0

0 −1 1













=

=
[

x′ y′ z
]

−
[

x0 y0 0
]

(13)

[

x y z
]

=

=
[

x′−x0 y′−y0 z
]

.













0 1 0

sec(θ) tan(θ) 0

sec(θ) tan(θ) 1













(14)

[

x y z
]

=
[

(y
′
−y0 +z)·sec(θ) x

′
−x0 +(y

′
−y0 +z)·tan(θ) z

]

(15)

This exactly matches with our previous deriva-

tion.

5 Rotation and affine transforma-

tions

A point in 3-D, after being mapped to 2-D screen,

following the above mapping procedure, may be

required to be transformed using standard com-

puter graphics transformations (translation, rotation

about an axis etc). But in order to undergo such a

graphics transformation and to show the point back

to the screen after the transformation, it needs to

go through the following steps in our previously-

described coordinate mapping system:

• First obtain the inverse coordinate transforma-

tion to obtain the original 3-D coordinates from

the mapped 2-D coordinates.

• Multiply the 3-D coordinate matrix by proper

graphics transformation matrix in order to

achieve graphical transformation.

• Use the same 3-D to 2-D map again to plot the

point onto the screen.



Image Processing & Communications, vol. 11, no. 2, pp. 75-82 81

These steps can be mathematically represented as:

• P3D = P2D × (M3×3)
−1

• P
′

3D = P3D ×T3×3

• P
′

2D = P
′

3D ×M3×3

Or, by a single line expression,

P
′

2D = ((P2D × (M3×3)
−1)×T3×3)×M3×3)

Here, as before× denotes matrix multiplication,

whereT3×3 denotes the traditional graphics trans-

formation matrix.

But, since we know the fact that matrix multipli-

cation is associative, we have,

P
′

2D = ((P2D × (M3×3)
−1)×T3×3)×M3×3

= P2D × (M3×3)
−1×T3×3×M3×3

= P2D × (M3×3)
−1×T3×3×M3×3)

(16)

P
′

2D = P2D ×M
′

whereM
′
= (M3×3)

−1×T3×3×M3×3

So, using this simple technique we can es-

cape the 3 successive matrix multiplications

every-time a point on screen needs to trans-

formed - instead we can pre-compute the matrix

M
′
= (M3×3)

−1×T3×3×M3×3.

This matrixM
′
is needed to be computed once for

a given graphics transformation (e.g., rotation about

an axis) and applied to all points on the screen, so

that using a single matrix multiplication thereafter

any point on the screen can undergo graphics trans-

formation, by,P
′

2D = P2D×M
′
, whereP2D represents

the point mapped before transformationT3×3 and

P
′

2D is the point re-mapped after the transformation,

as obvious.

Hence, using the above tricks we are able to make

the transformation more computationally efficient.

Moreover, if a transformation is needed to be

applied simultaneously, we can use the property

M−1
3×3 × (T3×3)

n ×M3×3 = (M−1
3×3 ×T3×3 ×M3×3)

n,

where(T3×3)
n denotes (n times,n is a positive in-

teger) simultaneous matrix multiplication ofT3×3 .

Let’s say we have already undergoneT3×3 a trans-

formation, so that we have already computedM
′
=

(M−1
3×3×T3×3×M3×3, and let’s say that we also have

frequent simultaneous(T3×3)
n transformation. In

order to undergo a(T3×3)
n transformation, we first

need to compute the matrix(T3×3)
n, then we need

to compute our new matrixM
′′
= (M−1

3×3×(T3×3)
n×

M3×3, so we need totaln+2 matrix multiplications,

every-time we want a(T3×3)
n transform, for eachn.

But if we have computedM−1
3×3×T3×3×M3×3 ini-

tially, here the trick is that we can reuse this it to



82 S. Dey, A. Abraham, S. Sanyal

compute our new matrix in the following manner:

M
′′
= M−1

3×3× (T3×3)
n×M3×3 =

= (M−1
3×3×T3×3×M3×3)

n = (M
′
)n

Here we need not compute(T3×3)
n andM

′′
every-

time, instead we need to compute(M
′
)n only (that

can be incremental multiplication to increase effi-

ciency).

6 Conclusions

This article presented a very simple method of map-

ping from 3-D to 2-D, that is free from any complex

pre-operation. The proposed technique works with

any graphics system where we have some primitive

2-D graphics function. We also discussed the inverse

transform and how to do basic computer graphics

transformations using our coordinate mapping sys-

tem.

7 References

[1 ] David F. Rogers, J. Alan Adams,Mathematical

Elements for Computer Graphics, McGraw-

Hill

[2 ] David F. Rogers,Procedural elements for com-

puter Graphics, United States Naval Academy,

Annapolis, MD

[3 ] Dave Shreiner, Mason Woo, Jackie Neider,

Tom Davis,OpenGL Programming Guide, The

Official Guide to Learning OpenGL, Version

1.4, Fourth Edition.

[4 ] Ken Turkowski,The Use of Coordinate Frames

in Computer Graphics, Graphics Gems I, Aca-

demic Press, 1990, pp. 522-532.

[5 ] Ken Turkowski,Fixed-Point Trigonometry with

CORDIC Iterations, Graphics Gems I, Aca-

demic Press, 1990, pp. 494-497.

[6 ] C. M. Ng, D. W. Bustard, A New Real Time Ge-

ometric Transformation Matrix and its Efficient

VLSI Implementation, Computer Graphics Fo-

rum, Volume 13 Page 285


