Image Processing & Communications, vol. 11, no. 2, pp. 75-82 75

A VERY SIMPLE APPROACH FOR 3-D TO 2-D MAPPING

SANDIPAN DEY M, AJiTH ABRAHAM (@, SuGATA SANYAL ()

(1) Anshin Soft ware Pvt. Ltd.

INFINITY, Tower - I, 10th Floor,

Plot No.- 43. Block - GP, Salt Lake Electronics Complex,
Sector - V, Kolkata - 700091

email: sandipand@anshinsoft.com

(2) 1ITA Professorship Program, School of Computer Science,
Yonsei University,

134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republicre&Ko
email: ajith.abraham@ieee.org

(3 School of Technology & Computer Science

Tata Institute of Fundamental Research

Homi Bhabha Road, Mumbai - 400005, INDIA

email: sanyal@tifr.res.in

Abstract. libraries with any kind of system is often a tough

Many times we need to plot 3-D functions e.g., intnal. This article presents a very simple method of

many scientific experiments. To plot this 3-D func-2PPN9 from 3-Dto 2-D, thatis free from any com-

tions on 2-D screen it requires some kind of mapplex pre-operation, also it will work with any graph-

ping. Though OpenGL, DirectX etc 3-D rendering'cs system where we have some primitive 2-D graph-

libraries have made this job very simple, still thesécs function. Also we discuss the inverse transform

libraries come with many complex pre-operation?nd how to do basic computer graphics ransforma-

that are simply not intended, also to integrate thes:ueOnS using our coordinate mapping system.

76 S. Dey, A. Abraham, S. Sanyal

1 Introduction 2 Proposed approach

We have a pictorial representation (Fig.1) of our 3-D

to 2-D mapping system:

We have a functiorf : R2 — R, and our intention

draw the point
_—e
onthe screen

Cx oy fix 50 (. ¥ = hi. . 5, 7 (x", 3 2.D Graphics

Y

Rendering library

is to draw the function in 2-D plane. The function

z= f(x,y) is a 2-variable function and each tuple
(x,y, f(x,y)) € R%. Let’s say we want to graphically Fig. 1: Basic Model of a simple 3-D to 2-D mapping
plot f onto computer screen using a primitiveSystem

graphics library (like Turbo C graphics), which
But, how the function f should look like after

supports only the basiputPixel (to draw a pixel _ _ .
mapping and plotting? Here we simulate the 3-rd

in 2-D screen) -like 2-D rendering function, but no _ _
coordinate (namely) in our 2-Dx—y plane. We

3-D rendering; i.e., our graphics librarysitPixels _ _ _
perform the logical to physical coordinate transform

domain isR? and it’s notR®. _ . -
and everything by the map function h, which will

basically turn out to be a 8 2 matrix. The basic

mapping technique is shown in Fig. 2, which we are

Hence in order to draw the functiohusing our _ _
shortly going to explain.

graphics library, we must design a coordinate con- o]
If we have our Origin 0 atxo,Yo) screen coordi-

version system, that will provide us with a func-
nate, we have,

tion that will take as input 3-tuplex,y, f(x,y)) and

produce as output a 2-tuple,y) that can be di-

X =Xo+y—x-sin(@
rectly passed to our graphics library to plot it onto oy (8) (D)

' =yo—2z+x-cog6
the screen, but with 3-D look & feel. As we dis- y =Yo—z+ 9)

cussed, it's essential that we have a simple coordi- -+ W€ have our 3-D to 2-D transformation ma-

nate mapping system that map3 to R? and still trix:

gives us a hypothetical feeling of drawing 3-D func-

tions. It's very easy to find such a map, i.e., a func- —sin(8) cog0)

tionh: R’ — RZ and in this paper we try to find such Max2 = 1 0 2)

a simple map. 0 -1

Image Processing & Communications, vol. 11, no. 2, pp. 75-82 77

- 1 control the dimension along— axisby a compres-
19 L
) v sion factorp, and slightly modifying the equations:
X .‘.9
N, ERDEELY)
z "\‘_P
. ¥ X =Xo+y—x-sin(6)
xo,yo)i z- x4 ¢cos (0) (4)
0 iz] Y =Yo— Pz Z+X-cog6)
3 T ’ Y X
N/ R
90° i :ﬂ};" 7 Xkcos (9) Obviously, 00 < p, < 1.0
_______ I S ‘ 1
. — By default we takeo, = 1.0.
X a
v —x+ sin(B)
X0
' 3 Sample output surfaces drawn

using the above mapping
Fig. 2: The basic coordinate mapping

. - . Following surfaces (Fig. 3 and Fig. 4) are drawn
Again we have shifting (change of origin) by the

, in Turbo C++ version 3.0 (BGI graphics) using the
matrix Ozp = [Xo,Yo] SO thatOpp + Psp x M3y =

. s above simple 3-D to 2-D mapping.
Pop, herex denotes matrix multiplication and de-

notes matrix addition, the 3-tuplep = [xyZ, the
2-tuplePp = [XY] i.e.

—sin(6) cog9)
o lxy 2]l 0 =[xy
0 -1

3)

By default we keep the angle betWeen4 Inverse Transformation - Obtain-

X -axis& Z-axis = 6 = 7, that one can ing original 3-D coordinates from
change if required, but with the following inequalit .
J q I the transformed 2-D coordinates

strictly satisfied: 0 < 6 < 7.
Here, our transformation function (matrix) is de-

One can optionally use a compression factor téned by Eqn. (1).

78 S. Dey, A. Abraham, S. Sanyal

Fig. 3: Sine function drawn in TurboC++ Version 3.0 (BGI Graphics) gisire 3-D to 2-D mapping

Fig. 4. Sync function drawn in TurboC++ Version 3.0 (BGI Graphicshgishe 3-D to 2-D mapping

Image Processing & Communications, vol. 11, no. 2, pp. 75-82 79

As we can see, it is impossible to re-convert and ob-

tain the original set of coordinates, namélyy, z), —sin(@) cogB) 0
because we have 3 unknowns and 2 equations. So, Msy.3= 1 0 0 (7)
in order to be able to get the original coordinates 0 -1 1

back, we at least need to store 3 tuples as result of,ih
the transformation, for instance,y,z) — (XY, 2),

the z-coordinate being stored only to get the inverse

0
/! /! r
transform(x,y’,z) — (x,y,z) and the(xX,y’) pair is Det(Ms, 3) — det 1 0 0| =
used to plot the point. So, in order to get the inverse 1

transformation, we need to solve the equations for

X,y, since we already know, we have 2-equations _1 —sin(@) cog6) | _cod6) (8)

and 2 unknown variables: 1 0

Now, 0 < 6 < 7, hencecog6) # 0, hence
Det(Msy3) # 0 and the inverse exists.

y—x-sin(8) =X —xg

x-co90) =y —yo+z © —sin(@) cog0) O
[X Yo O } + [Xy z} . 1 0 0
solving the above 2 equations we get, 0 -1 1
=Xy 7 (9)
But, we have,
x= (Y —Yo+2) seq0))
y=X—=X+(y —Yo+2)-tan(6) Adi(Mara)
INV(M3,3) = (Mays) ' = Det(Msys) (10)
Put it in another way, our transformation matrix Det(Msys) 2 0
is a 3x 2 matrix and is done by Egn. (2) since a
non-square matrix, no question of existence of itgnd’
inverse. So, in order to be able to get the inverse 0 —cog6) 0
transform as well, we need a33 invertible square Adj(Msx3)=| —1 —sin(6) 0 (11)

matrix, e.g., -1 -—sin(@) —cog0)

80 S. Dey, A. Abraham, S. Sanyal

Hence, 5 Rotation and affine transforma-
tions
0 - 0 A point in 3-D, after being mapped to 2-D screen,

Iv(Ms.3) = (Ma«3) = | se6) tan(6) O following the above mapping procedure, may be
sedf) tan8) 1 required to be transformed using standard com-

(12) puter graphics transformations (translation, rotation

about an axis etc). But in order to undergo such a

here,cog8) +# 0.

]) graphics transformation and to show the point back
So, the inverse transform is:

to the screen after the transformation, it needs to

go through the following steps in our previously-

—sin(8) cog6) 0 described coordinate mapping system:
[Xy z} . 1 0 0=
0 1 1 « First obtain the inverse coordinate transforma-
tion to obtain the original 3-D coordinates from
- { Xy z } - { X Yo O } (13) the mapped 2-D coordinates.
» Multiply the 3-D coordinate matrix by proper
{ } - graphics transformation matrix in order to
SR achieve graphical transformation.
0 1 0

» Use the same 3-D to 2-D map again to plot the
~[x—% y-y z].| sec6) tan®) o |9

se¢f) tanf) 1

point onto the screen.

[x y z}:[(y’—yo+z)-sec(6) X =X+ (Y —Yo+2)-tan() z | (15)

This exactly matches with our previous deriva-

tion.

Image Processing & Communications, vol. 11, no. 2, pp. 75-82 81

These steps can be mathematically represented asThis matrixM’ is needed to be computed once for

a given graphics transformation (e.g., rotation about

* P3p =Pop x (Maya) * _ . :
an axis) and applied to all points on the screen, so

* Pip =Pap x Taus that using a single matrix multiplication thereafter

/ / any point on the screen can undergo graphics trans-

formation, by,Pop = Pop x M', wherePop represents
Or, by a single line expression, the point mapped before transformatidg.z and

PéD is the point re-mapped after the transformation,

P = ((Pop X (Mgx3) ™) X Tax3) X May3) as obvious.

Hence, using the above tricks we are able to make

Here, as beforex denotes matrix multiplication, e transformation more computationally efficient.

where T35 denotes the traditional graphics trans-

formation matrix.
Moreover, if a transformation is needed to be

But, since we know the fact that matrix multipli- @PPlied simultaneously, we can use the property

-1 n _ -1 n
cation is associative, we have, M35 X (T3x3)" X M3x3 = (M5 X Tax3 X Max3)",

, where (Ts«3)" denotes if times, n is a positive in-
Pop = ((Pop X (Max3) ™) x Tax3) X Mays3)

= Pop % (M3zy3) "1 X Taxz x May3 (16)

= Pop x (M3y3) "1 x Taxz x May3)

teger) simultaneous matrix multiplication @..3 .
Let's say we have already undergong s a trans-
, / formation, so that we have already compuldd=
Pop = Foo x M (M§X13 x Tzx3 X M3y 3, and let’s say that we also have
whereM' = (M3,3) ™1 X Tax3 X M3y3 frequent simultaneous$Ts,3)" transformation. In
order to undergo &Ts.3)" transformation, we first
So, using this simple technique we can esneed to compute the matrids.3)", then we need
cape the 3 successive matrix multiplicationgo compute our new matriM”:(nglg,x(Tng)”x
every-time a point on screen needs to transviz.s, SO we need total+ 2 matrix multiplications,
formed - instead we can pre-compute the matrigvery-time we want &Ts,3)" transform, for each.
M = (May3) 1 x Taxz X Mzy3. But if we have computed;’; x Ta.3 X Mgy ini-

tially, here the trick is that we can reuse this it to

82 S. Dey, A. Abraham, S. Sanyal

compute our new matrix in the following manner: Tom Davis,OpenGL Programming Guide, The
M" =Mzl x (Taxa)" X May3 = Official Guide to Learning OpenGLVersion
= (M3 X Tax3 X May3)" = (M')" 1.4, Fourth Edition.

Here we need not comput@s,.3)" andM" every- _ _
[4] Ken Turkowski,The Use of Coordinate Frames

time, instead we need to compuel’)" only (that _ _ _
in Computer Graphics, Graphics GemsAca-

can be incremental multiplication to increase effi- i
demic Press, 1990, pp. 522-532.

ciency).
[5 1Ken Turkowski,Fixed-Point Trigonometry with
. CORDIC lterations, Graphics Gems Aca-
6 Conclusions

demic Press, 1990, pp. 494-497.
This article presented a very simple method of map-

[6 1C. M. Ng, D. W. Bustard, A New Real Time Ge-

ping from 3-D to 2-D, that is free from any complex])]] o
ometric Transformation Matrix and its Efficient

pre-operation. The proposed technique works with _ _
VLSI Implementation, Computer Graphics Fo-

any graphics system where we have some primitive
rum, Volume 13 Page 285
2-D graphics function. We also discussed the inverse
transform and how to do basic computer graphics
transformations using our coordinate mapping sys-

tem.

7 References

[1] David F. Rogers, J. Alan AdamBathematical
Elements for Computer GraphicMcGraw-

Hill

[2] David F. RogersProcedural elements for com-
puter GraphicsUnited States Naval Academy,

Annapolis, MD

[3] Dave Shreiner, Mason Woo, Jackie Neider,

