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A New Approach for Solving
Nonlinear Equations Systems

Crina Grosan and Ajith Abraham, Senior Member, IEEE

Abstract—This paper proposes a new perspective for solving
systems of complex nonlinear equations by simply viewing them
as a multiobjective optimization problem. Every equation in the
system represents an objective function whose goal is to minimize
the difference between the right and left terms of the correspond-
ing equation. An evolutionary computation technique is applied
to solve the problem obtained by transforming the system into
a multiobjective optimization problem. The results obtained are
compared with a very new technique that is considered as efficient
and is also compared with some of the standard techniques that are
used for solving nonlinear equations systems. Several well-known
and difficult applications (such as interval arithmetic benchmark,
kinematic application, neuropsychology application, combustion
application, and chemical equilibrium application) are considered
for testing the performance of the new approach. Empirical results
reveal that the proposed approach is able to deal with high-
dimensional equations systems.

Index Terms—Computational intelligence, evolutionary
multiobjective optimization, metaheuristics, nonlinear equation
systems.

I. INTRODUCTION

YSTEMS of nonlinear equations arise in many domains

of practical importance such as engineering, mechanics,
medicine, chemistry, and robotics. Solving such a system in-
volves finding all the solutions (there are situations when more
than one solution exists) of the polynomial equations contained
in the mentioned system. The problem is nondeterministic
polynomial-time hard, and it is having very high computa-
tional complexity due to several numerical issues [27]. There
are several approaches for solving these types of problems.
Van Hentenryck et al. [27] divided these approaches into two
main categories:

1) interval methods that are generally robust but tend to
be slow;

2) continuation methods that are effective for problems for
which the total degree is not too high [27].

The limitations of Newton’s method are pointed out in
the aforementioned works. Bader [5] mentioned that standard
direct methods, such as Newton’s method, are impractical
for large-scale problems because of their high linear algebra
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costs and large memory requirements. Bader proposed a tensor
method using Krylov subspace methods for solving large-
scale systems of linear equations. There is a condition to be
fulfilled—the equations must be continuously differentiable at
least once. Bader’s paper also provides a good review of similar
research for solving systems of equations.

Krylov subspace methods based on moment matching are
also used by Salimbahrami and Lohmann [44]. Effati and
Nazemi [18] proposed a very efficient approach for solving
nonlinear systems of equations. Although there are several
existing approaches for solving systems of nonlinear equations,
there are still limitations of the existing techniques, and, still,
more research is to be done.

There is a class of methods for the numerical solutions of the
above system, which arise from iterative procedures used for
systems of linear equations [39], [43]. These methods use re-
duction to simpler 1-D nonlinear equations for the components
f1, fay ..., fn [26]. In a strategy based on trust regions [30], at
each iteration, a convex quadratic function is minimized to de-
termine the next feasible point to step to. The convex quadratic
function is the squared norm of the original system plus a linear
function multiplied by the Jacobian matrix. There is also the
approach of homotopy methods, which are sometimes referred
to as continuation methods [28], [30], [38]. This approach be-
gins with a “starting” system of equations (not the true system)
whose solution is known. This starting system is gradually
transformed to the original system. At each stage, the current
system is solved to find a starting solution for the next stage
system. The idea is that as the system changes, the solutions
trace out a path from a solution of the starting system to a solu-
tion of the original system. At each stage, the current system is
normally solved by a Newton-type method [28]. The dimension
reducing method, the modified reducing dimension method,
and the perturbed dimension reducing method [21]-[25] are
also methods for numerical solutions of systems of nonlinear
equations, which incorporate Newton and nonlinear successive
overrelaxation algorithms [39] and use reduction to simpler 1-D
nonlinear equations (but they quadratically converge).

In the approach proposed in [36], the system of equations
is transformed into a constraint optimization problem. At each
step, some equations that are satisfied at the current point are
treated as constraints and the other ones as objective functions.
The set {1,2,...,n} is divided into two parts, i.e., S7 and Sa,
where S denotes the complement {1,2,...,n} \ S;. Then, the
problem is given by

minimize Z f2(z)
€S,

subject to f;(z) =0, j € Ss.
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The equations system is reduced to the same form in the
approach used in [37].

The optimization problem obtained in [28] by transforming
the systems of equations is similar to the one proposed in
[36] and considers the equation given by the sum of squared
components f1, fa,..., fn.

In this paper, we propose a novel approach that transforms
a system of nonlinear equations into a multiobjective opti-
mization problem. The new obtained problem is solved using
the standard Pareto dominance relationship between solutions
and an iterative strategy that evolves some random solutions
in the search for optimal solutions. The technique uses prin-
ciples from the evolutionary computation field and is able
to approximate the solutions even for large-scale systems of
equations. Moreover, no additional constraints involving extra
problem knowledge (such as the condition that equations must
be differentiable) are required.

The successful application of the multiobjective optimization
approaches is well known, and there is a huge amount of
work in this field reporting applications in different domains
in science and engineering [1], [11].

Abido [2] developed Pareto-based multiobjective evolution-
ary algorithms for solving a real-world power system mul-
tiobjective nonlinear optimization problem. Specifically, the
nondominated sorting genetic algorithm (NSGA), the niched
Pareto genetic algorithm, and the strength Pareto evolution-
ary algorithm were developed and successfully applied to an
environmental/economic electric power dispatch problem.

Benedetti et al. [6] illustrated that when dealing with the
multiobjective optimization of the tire suspension system of
a racing car, a large number of design variables and a large
number of objectives have to be taken into account. Two
different models have been used, which are both validated on
data coming from an instrumented car—a differential equation-
based model and a neural network model. Up to 23 objective
functions have been defined, and at least 14 of which were in
strict conflict of each other. Benedetti et al. provided a fuzzy
definition of optima, being a generalization of Pareto optimal-
ity, and the result of such an approach is that subsets of Pareto
optimal solutions can be properly selected as a consequence
of input from the designer. The obtained optimal solutions
were compared with the reference vehicle and with the optima
previously obtained with the design of experiment techniques
and different multiobjective optimization strategies.

Tan et al. [49] developed a cooperative coevolutionary algo-
rithm (CCEA) for multiobjective optimization, which applies
the divide-and-conquer approach to decompose decision vec-
tors into smaller components and evolves multiple solutions in
the form of cooperative subpopulation. Incorporated with vari-
ous features like archiving, dynamic sharing, and an extending
operator, the CCEA is capable of maintaining archive diversity
in the evolution and uniformly distributing the solutions along
the Pareto front. Exploiting the inherent parallelism of coopera-
tive coevolution, the CCEA can be formulated into a distributed
CCEA that is suitable for concurrent processing that allows
the intercommunication of subpopulation residing in networked
computers and, hence, expedites the computational speed by
sharing the workload among multiple computers.

Deb et al. [12] used the NSGA 1II for the optimization of the
epoxy polymerization process. The problem is a well-known

chemical engineering problem and involves the optimization
of three conflicting objectives and 20 variables. A modified
differential evolution is used by Babu e al. [4] and Angira
and Babu [3] for solving practical multiobjective optimization
problems from chemistry.

Medaglia et al. [31] proposed an evolutionary method for
project selection problems with partially funded projects, mul-
tiple (stochastic) objectives, project interdependence (in the
objectives), and a linear structure for resource constraints. The
method is based on the posterior articulation of preferences
and is able to approximate the efficient frontier composed of
stochastically nondominated solutions.

Chen et al. [9] developed an efficient macroevolutionary
multiobjective genetic algorithm (MMGA) for optimizing the
rule curves of a multipurpose reservoir system in Taiwan.
Macroevolution is a new kind of high-level species evolution
that can avoid premature convergence that may arise during
the selection process of conventional genetic algorithms. The
MMGA enriches the capabilities of genetic algorithms to han-
dle multiobjective problems by diversifying the solution set.

Monitoring complex environmental systems is extremely
challenging because it requires environmental professionals
to capture impacted systems’ governing processes, elucidate
human and ecologic risks, limit monitoring costs, and satisfy
the interests of multiple stakeholders (e.g., site owners, regu-
lators, and public advocates). Reed et al. [42] illustrated how
evolutionary multiobjective optimization has tremendous po-
tential to help resolve these issues by providing environmental
stakeholders with a direct understanding of their monitoring
tradeoffs. Reed et al. used dominance archiving and automatic
parameterization techniques to significantly improve the ease of
use and efficiency of multiobjective optimization algorithms.

Heavy industry maintenance facilities at aircraft service cen-
ters or railroad yards must contend with scheduling preventive
maintenance tasks to ensure that critical equipment remains
available. All preventive maintenance tasks should be com-
pleted as quickly as possible to make the equipment available.
This means that the completion time should be also minimized.
A cost-effective schedule should strike some balance between a
minimum schedule and a minimum size workforce. Quan et al.
[41] used evolutionary algorithms to solve this multiobjective
problem. Rather than conducting a conventional dominance-
based Pareto search, Quan et al. introduced a form of utility
theory to find the Pareto optimal solutions. The advantage of
this method is that the user can target specific subsets of the
Pareto front by merely ranking a small set of initial solutions.

The performance of the proposed approach is evaluated
for several well-known benchmark problems from kinematics,
chemistry, combustion, and medicine. Numerical results reveal
the efficiency of the proposed approach and its flexibility to
solve large-scale systems of equations.

II. BAsiCc CONCEPTS

A nonlinear system of equations is defined as

i
="

fal2)
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Fig. 1. Example of a solution for two nonlinear equations systems represented
by f1 and f2.

where @ = (z1, 22, ..., x,) refers to n equations and n vari-
ables, and f1, ..., f, are nonlinear functions in the space of all
real valued continuous functions on =[] [a;, b;] C R™.
Some of the equations can be linear, but not all of them. Finding
a solution for a nonlinear system of equations f(x) involves
finding a solution such that every equation in the nonlinear
system is 0, i.e.,

f1(x1,x2,...,xn):()
) yereydn :O

(P) f2(351 Z2 . CIJ) 0
fn(x17$27""axn):0-

In Fig. 1, the solution for a system having two nonlinear
equations is depicted.

There are also situations when a system of equations is
having multiple solutions. For instance, the system

fi(z1, 2,3, 24) = 2% + 223 + cos(z3) — x5 =0

(

fa(w1, 20, w3, 24) = 322 + 23 + sin?(z3) — 22 =0
(
(

fs

f4 T1,T2,T3,T4

T1,T9,T3,24) = —223 — 25 — cos(z3) + 23 =0

)
4)
T4) =
)= —2? — 22 — cos?(z3) + 23 =0

has two solutions: (1, —1, 0, 2) and (—1, 1, 0, —2). The
assumption is that a zero, or root, of the system exists. The
solutions we are interested in are those points (if any) that
are common to the zero contours of f;, i =1,...,n. There
are several ways to solve nonlinear equations systems [7],
[13]-[17], [39]. Probably the most popular techniques are the
Newton-type techniques. Some other techniques are as follows:

* trust-region method [10];

¢ Broyden method [8];

¢ secant method [16];

» Halley method [39].

The quasi-Newton methods are similar to the conjugate gra-
dient methods. The goal is to accumulate information from
successive line minimizations so that N such line minimiza-
tions lead to the exact minimum of a quadratic form in
N dimensions [40].

1) Newton’s Method: We can approximate f by the first-
order Taylor expansion in a neighborhood of a point 2% € R™.

Fig. 2. Example of the secant method.
function f;
function f,
Fig. 3. Illustrative example.
TABLE I
PARAMETERS USED BY THE EVOLUTIONARY APPROACH
Parameter Value
Population size 200
External set size 50
Number of generations 150
Sigma for mutation 0.23
Tournament size 5

The Jacobian matrix J(x*) C R"*™ for f(x) evaluated at z*

is given by
Sf df1
dr1 ' dxn
J =
fn  Ofn
dx1 " dxp

Then, we have

fla® +1) = fa") + I (@)t + O (|Ipll?) -

By setting the right side of the equation to zero and neglect-
ing terms of order higher than the first [O(]|p||?)], we obtain

Then, the Newton algorithm is described as follows:

Algorithm 1 Newton algorithm.
Set k = 0.
Guess an approximate solution z:°.
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TABLE 1II
PARETO FRONT OBTAINED BY THE EVOLUTIONARY APPROACH
Values

T y f fa
0.996688 -1.000076 0.006765 0.0032346
0.991807 -0.994134 0.004620 0.0140101
0.991597 -0.991074 0.001036 0.0172525
-1.018355 1.0182264 0.000262 0.0369164
-0.983186 -1.016728 0.067080 0.0003659
-1.023594 -0.976637 0.093923 0.0003195
-1.001930 -1.004958 0.006077 0.0068986
-1.005263 -0.994158 0.022202 0.0006085
-1.027410 -1.027403 0.000014 0.0555657
0.055
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Fig. 4. Pareto front obtained by the evolutionary approach.
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Fig. 5. Sum of the absolute values of the nondominated solutions obtained.

Repeat
Compute J(z*) and f(z*).
Solve the linear system J(z*)t = — f(x*).
Set 2+l = 2% +¢.
Sett =t + 1.
Until converge to the solution

The index k is an iteration index, and z* is the vector z after
k iterations. The idea of the method is to start with a value that
is reasonably close to the true zero, then replace the function
by its tangent, and compute the zero of this tangent. This zero

of the tangent will typically be a better approximation to the
function’s zero, and the method can be iterated.
Remarks:
1) This algorithm is also known as the Newton—Raphson
method. There are also several other Newton methods.
2) The algorithm converges fast to the solution.
3) It is very important to have a good starting value (the
success of the algorithm depends on this).

4)

5)

2)
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TABLE III
VALUES OF THE PARAMETERS USED IN THE EXPERIMENTS
BY THE EVOLUTIONARY APPROACH

Parameter Value
Example 1 Example 2
Population size 250 300
External set size 100 100
Number of generations 150 200
Sigma (for mutation) 0.1 0.1
Tournament size 4 5
TABLE IV

RESULTS FOR THE FIRST EXAMPLE

Method Solution Functions values

Newton’s method (0.15, 0.49) (-0.00168, 0.01497)
Secant method (0.15, 0.49) (-0.00168, 0.01497)
Broyden’s method (0.15, 0.49) (-0.00168, 0.01497)

Effati’s method (0.1575, 0.4970) (0.005455, 0.00739)

Evolutionary approach | (0.15772, 0.49458) | (0.001264, 0.000969)

TABLE V
RESULTS FOR THE SECOND EXAMPLE

Method Solution Functions values

Effati (0.0096, 0.9976) (0.019223, 0.016776)

Evolutionary approach |(-0.00138, 1.0027) |(-0.00276, -6,37E-5)

TABLE VI
BENCHMARKS USED IN THE EXPERIMENTS

Benchmark Number of variables | Range
1. | Interval il 10 -2, 21
2. | Neurophysiology application | 6 [-10, 10]
3. | Chemical equilibrium 5 [-10, 10]
4. | Kinematics kin2 8 [-10, 10]
5. | Combustion application 10 [-10, 10]
6. | Economics €2 20 [-10, 10]

TABLE VII

PARAMETERS USED BY THE EVOLUTIONARY APPROACH
FOR THE INTERVAL ARITHMETIC 11 BENCHMARK

Parameter Value
Population size 500
External set size 200
Number of generations 300
Sigma (for mutation) 0.1
Tournament size 5

The Jacobian matrix is needed; however, in many prob-
lems, analytic derivatives are unavailable.

If function evaluation is expensive, then the cost of
finite-difference determination of the Jacobian can be
prohibitive.

Broyden’s Method: Let us denote [40] the approximate

Jacobian by B and let

dx = —J Lf.
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TABLE VIII
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE INTERVAL ARITHMETIC 11 BENCHMARK
Solution | Variables values Functions values Solution | Variables values Functions values
Sol. 1 0.0464905115 0.2077959240 Sol. 5 0.1169663983 0.1376466161
0.1013568357 0.2769798846 -0.0360324410 0.4148982728
0.0840577820 0.1876863212 -0.0517944631 0.3233536840
-0.1388460309 0.3367887114 -0.1825907448 0.3816023122
0.4943905739 0.0530391321 0.0741902056 0.3669485262
-0.0760685163 0.2223730535 0.25036046290 0.1038035643
0.2475819110 0.1816084752 0.2043019803 0.2250628007
-0.0170748156 0.0874896386 0.0120607075 0.0595255950
0.0003667535 0.3447200366 0.18799376080 0.1571104516
0.1481119311 0.2784227489 0.09312965555 0.3333260708
Sol. 2 0.1224819761 0.1318552790 Sol. 6 0.0600624922 0.1941520526
0.1826200685 0.1964428361 0.0665034453 0.3118493104
0.2356779803 0.0364987069 0.1163378165 0.1553271371
-0.0371150470 0.2354890155 -0.0456993775 0.2437021588
0.3748181856 0.0675753064 0.1649150798 0.2765628684
02213311341 0.0739986588 -0.1223771045 0.2690505556
0.0697813035 0.3607038292 0.0666559953 0.3628858561
0.0768058043 0.0059182979 0.0732866593 0.0028059669
-0.0312153867 0.3767487763 0.0745961823 0.2703511071
0.1452667120 0.2811693568 0.0578573421 0.3686104960
Sol. 3 0.0633944399 0.1908436653 Sol. 7 0.2077500302 0.0464943050
0.1017426933 0.2767897367 0.0299198492 0.3489889696
-0.1051842285 0.3769063436 -0.0339491324 0.3058418474
-0.0477059943 0.2460900702 -0.2027950317 0.4012915513
0.4149858326 0.0260337751 0.2131771707 0.2284027988
0.1215195321 0.0256054760 0.0568458067 0.0886970244
0.2539777159 0.1761486401 0.2267650517 0.2024745658
0.0843972823 0.1349869851 -0.0977041236 0.1687259437
-0.0534132992 0.3986395691 -0.0339921200 0.3787652675
0.0880998746 0.3383563536 0.2532921324 0.1741025236
Sol. 4 0.1939820199 0.0603335280 Sol. 8 -0.0364260444 0.2907604740
0.0152114400 0.3633514726 0.1232874096 0.2550909534
0.1618654345 0.1097465792 -0.0349926786 0.3065546443
0.0056985809 0.1914653768 0.0959206680 0.1020362156
0.1904538879 0.2502358229 0.2474776135 0.1940393232
-0.1623604033 0.3089460561 0.0877790534 0.0582777294
0.1864448178 0.2428992222 0.2453311373 0.1832428336
-0.0449302706 0.1144916285 -0.1234286095 0.1938589990
0.1675935311 0.1774161896 -0.0767543100 0.4216253107
-0.0274959004 0.4539962587 0.0837953112 0.3428082855
Then, the ith quasi-Newton step dz; is the solution of where
5fz = fi+1 - fz

Bz-(ixi = _fi

where

(;Ii = Ti4+1T;.

The quasi-Newton or secant condition is that B, satisfies

Bi+15.’Ei = (Sfl

This is the generalization of the 1-D secant approximation to
the derivative § f /dx. Many different auxiliary conditions to pin
down B, ; have been explored; however, the best-performing
algorithm in practice results from Broyden’s formula. This
formula is based on the idea of getting B;y; by making the
least change to B; consistent with the secant equation. Broyden
illustrated that the resulting formula is given by

(0fi — Bidx;) @ 04

Bii1 =B;
+1 + (60)?
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3) Secant Method: The secant method [40] is a root-finding
algorithm that uses a succession of roots of secant lines to better
approximate a root of a function. The secant method is defined
by the recurrence relation

Tn — Tp—-1
f(@n) = f(zn-1)

As evident from the recurrence relation, the secant method
requires two initial values, i.e., ¢ and x1, which should ideally
be chosen to lie close to the root. Referring to Fig. 2, two points
a and b are initially considered. Then, the secant of the chord of
the graph of function f through the points (a, f(a)), (b, f(b))
is defined as

Tp4+1l = Tp —

The point c is chosen to be the root of this line such that

f(b) — f(a)

ro)+ 1=

(c—b) =0.

Solving this equation gives the recurrence relation for the
secant method. The new value c is equal to =41, and b and
a are z, and z,_1, respectively.

4) Effati and Nazemi Method: Effati and Nazemi [18] pro-
posed a new method for solving systems of nonlinear equations.
The method proposed in [18] is shortly presented below.

The following notations are used:

zi(k+ 1) = fi (z1(k), 22(k), ..., zn(k))
f(xr) = (fi(wr), fa(z)s - - s fulor))
1=1,2...,n and =xz;: N — R.

If there exists a ¢ such that z(¢t) = 0, then f;(x(t — 1)) =0,
i =1,...,n. Thisinvolves that z(¢ — 1) is an exact solution for
the given system of equations.

Let us define

u(k) up (k), uz(k), . ..

= ( s un (k)
z(k+1) = u(k).

Define f': Q x U — R (2 and U are compact subsets of
™) as follows:

£O (2(k), u(k)) = lu(k) = f (@(k)]l5 -
The error function F is defined as follows:

t—1

Ele',u'] = 3 £ (a(k), u(k))

k=0
zt = (z(1),2(2),...
ut = (u(1),u(2),...
Consider the following problem:
minimize Ela’, u'] = Y0 0 (2(k), u(k))
subject to

z(k+1) =u(k
2(0) =0, x(t) = 0 (2 is known).

(P1)

w
c
k=]
T4
c
®
=3
2
= -ﬂ\._/wv‘v’ /’\/_‘ ]
S 2 ™ Vv
=
‘S
el
%]

0 T T T T . :
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=
s
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o
s
g
@ 27
=
5
£ 1
)

0 T . :

0 50 100 150
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(b)

Fig. 6. Nondominated solutions obtained for i1 example. (a) Solutions whose
sum of the absolute values of the objective functions is less than or equal
to 2.5. (b) Sum of the absolute values of the objective functions for all the
nondominated solutions obtained.

TABLE IX
PARAMETERS USED BY THE EVOLUTIONARY APPROACH
FOR THE NEUROPHYSIOLOGY APPLICATION

Parameter Value
Population size 300
External set size 200
Number of generations 200
Sigma (for mutation) 0.13
Tournament size 5

As illustrated in [18], if there is an optimal solution for the
problem (P;) such that the value of E will be zero, then this is
also a solution (an exact solution) for the system of equations
to be solved. The problem is transformed to a measure theory
problem. By solving the transformed problem, u! is firstly
constructed, and from there, z! is obtained. The reader is
advised to consult [18] for more details. The measure theory
method is improved in [18]. The interval [1,¢] is divided into
the subintervals Sy = [1,t — 1] and S, = [t — 1,t]. Problem
(P1) is solved in both subintervals, and errors E; and E; are
obtained, respectively. This way, an upper bound for the total
error is found. If this upper bound is estimated to be zero, then
an approximate solution for the problem is found.

III. TRANSFORMATION INTO A MULTIOBJECTIVE
OPTIMIZATION PROBLEM

Some basic definitions of a multiobjective optimization prob-
lem and the optimality concept of the solutions [48] are pre-
sented in this section.
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TABLE X
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE NEUROPHYSIOLOGY APPLICATION
Solution | Variables values Functions values Solution | Variables values Functions values
Sol. 1 -0.8282192996 0.3139636069 Sol. 7 0.6609930931 0.0837968094
0.5446434961 0.1206333341 -0.4821043312 0.0055056402
-0.0094437659 0.0652332757 0.8042915766 0.3405628319
0.7633676230 0.0123681793 -0.8729660781 0.2381471738
0.0199325983 0.0465408323 -0.8987020407 0.3141261109
0.1466452805 0.0330776356 -0.1909288931 0.2770687343
Sol. 2 -0.6512719807 0.3607740323 Sol. 8 0.2739187045 0.0075566488
-0.6858609598 0.1134596029 0.1077541336 0.1344681018
-0.4637572369 0.0143291397 0.9656734396 0.3079429049
-0.6450853748 0.0412380343 0.9240784300 0.0065004171
0.1535909562 0.0204607154 -0.3143660356 0.0831983095
-0.0036883801 0.0290928705 -0.0314940456 0.0231155825
Sol. 3 0.0425943625 0.1489636110 Sol. 9 -0.0838634907 0.2102336348
-0.1626952821 0.0049729625 -0.1437222650 0.2606391818
-0.9215324786 0.3332320690 0.8847221485 0.0953305060
0.9841530788 0.0038536711 0.8477645479 0.0000303505
-0.6789794019 0.1183698936 0.1777227339 0.0069629557
-0.9070329917 0.0224932754 -0.0455327341 0.0003085023
Sol. 4 0.3269911198 0.2710537507 Sol. 10 0.4612359064 0.0889325997
0.0266425162 0.0257807695 0.2783584687 0.1108731832
0.7886843835 0.1331679003 0.9360523694 0.0852199228
0.9866658030 0.0083976429 -0.9009125260 0.0198955321
-0.2403284017 0.0421023524 -0.1421082154 0.1197727508
0.2613854687 0.2008350659 -0.2759388163 0.0090365095
Sol. 5 0.8625703877 0.2043564483 Sol. 11 -0.6907741758 0.2281557150
-0.7176375053 0.2177684569 0.8565963646 0.0325274349
-0.2271912801 0.0227051752 -0.5428400528 0.0273082414
0.5169409578 0.1404211857 0.5465986672 0.0385212104
-0.1305290129 0.0352067233 -0.2327716625 0.0318257635
0.1532817352 0.0628718325 -0.0607828078 0.0359158033
Sol. 6 0.7618711576 0.1608754444 Sol. 12 -0.8078668904 0.0050092197
0.6775336796 0.0901846503 -0.9560562726 0.0366973076
0.5086028850 0.0169111046 0.5850998782 0.0124852708
-0.6713892035 0.1306483985 -0.2219439027 0.0276342907
0.2563543063 0.0674916558 0.0620152964 0.0168784849
0.0555642759 0.0585551925 -0.0057942792 0.0248569233

Let ) be the search space. Consider n objective functions fi,

f27"'afn’ i.e.,

fi: Q—R, i1=1,2,....n
where 2 C R™.
The multiobjective optimization problem is defined as

{optimize fx)=(fi(),..., fa(2))

subject to z = (z1, 22, ... Zm) € Q.

For deciding whether a solution is better than another solu-
tion or not, the following relationship between solutions might
be used.

Definition 1—Pareto Dominance: Consider a maximization
problem. Let =z and y be two decision vectors (solutions)
from €.

Solution z dominates y (also written as x > y) if and only if
the following conditions are fulfilled.

2) 3 e{1,2,...,n}: fi(z) > f;i(y).

That is, a feasible vector z is Pareto optimal if no feasible vector
y can increase some criterion without causing a simultaneous
decrease in at least one other criterion. In the literature, other
terms have also been used instead of the Pareto optimal or
minimal solutions, including words such as nondominated,
noninferior, efficient, and functional-efficient solutions. The
solution 2° is ideal if all objectives have their optimum in a
common point z°.

Definition 2—Pareto Front: The images of the Pareto opti-
mum points in the criterion space are called the Pareto front.
The system of equations (P) can be transformed into a multiob-
jective optimization problem. Each equation can be considered
as an objective function. The goal of this optimization function
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is to minimize the difference (in absolute value) between the
left side and the right side of the equation. Since the right term
is zero, the objective function is to be given by the absolute
value of the left term.

The system (P) is then equivalent to

fl(x17x21"'7xn) =0

f2<x17$2a"'a$n) =0
(P)q .

falzy, 20, ... 2,) =0

minimize abs (f1(z1, zo, ...

minimize abs (f2(z1, zo, . . .
& (P)

minimize abs (f,, (21, z2, . ..

IV. EVOLUTIONARY NONLINEAR EQUATIONS SYSTEM

Evolutionary algorithms are ubiquitous nowadays, having
been successfully applied to numerous problems from dif-
ferent domains, including optimization, automatic program-
ming, machine learning, operations research, bioinformatics,
and social systems. In many cases, the mathematical function
that describes the problem is not known, and the values at
certain parameters are obtained from simulations. In contrast to
many other optimization techniques, an important advantage of
evolutionary algorithms is that they can cope with multimodal
functions.

An evolutionary algorithm approach is proposed for solving
the multiobjective optimization problem obtained by transform-
ing the system of equations. The following steps may be used.

Initialization: Some starting points (initial solutions) are
generated based on the problem domain of definition (which
can be approximated for each particular problem). A real
representation of solution is considered. Each solution is a
vector whose length is equal to the number of variables for the
considered system of equations.

Evolution Phase: The current available solution is evolved
in an iterative manner. Genetic operators (such as crossover
and mutation) are used. By applying crossover between two
solutions, two new solutions are obtained, which are convex
combinations of the initial two solutions. The mutation operator
produces modification of the solution over which it is applied.
This consists of generating a new solution with Gaussian dis-
tribution (or any other distribution) starting from the initial
considered solution (the one that is mutated). More details
about several existing forms of these operators can be found
in [1], [19], [20], and [45]-[47].

To compare two solutions, the Pareto dominance relationship
is used. An external set is used where all the nondominated
solutions found during the iteration process are stored. The
size of this external set is fixed and depends on the number of
nondominated solutions to be obtained at the end of the search
process. At each iteration, this set is updated by introducing all
the nondominated solutions obtained at the respective step and
by removing from the external set all solutions that will become
dominated. When the size of this set is overloaded, some of the
solutions are removed.
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Fig. 7. Nondominated solutions obtained for the neurophysiology application.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 1. (b) Sum of the absolute values of the objective functions for
all the nondominated solutions obtained.

TABLE XI
PARAMETERS USED BY THE EVOLUTIONARY APPROACH
FOR THE CHEMICAL EQUILIBRIUM APPLICATION

Parameter Value
Population size 500
External set size 200
Number of generations 500
Sigma (for mutation) 0.3
Tournament size 5

There are several criteria that must be taken into account
while comparing two nondominated solutions in order to select
one of them. One of the conditions that can be used in our case
for comparing solutions that are nondominated is to consider
as being the best solution among the two solutions the one for
which the sum of all absolute values of the objectives is closer
to zero. This means that, overall, the value of each objective is
close to zero, or there is good balance between objectives hav-
ing a lower value (desired) and objectives having a higher value
(undesired). In other words, let us consider two n-dimensional
solutions x and y (which means that the considered system is
having n variables and n equations) and the equivalent system
of equations as given by P’. One way to compare the solutions
is to consider that the solution x is better than the solution y if

The aforementioned principle is used to select which solu-
tions to be kept into the external set for the next iteration as well
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EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED BY THE g\lA/‘C])BIIjI?TIC))(I}IIARY APPROACH FOR THE CHEMICAL EQUILIBRIUM APPLICATION
Solution | Variables values Functions values Solution | Variables values Functions values
Sol.1 | -0.0163087455 0.1525772447 Sol. 8 | 0.1296088399 0.0660183067
02613604709 0.3712483549 0.2275206857 0.1191351931
0.5981559224 00265535280 -0.1061140447 02387977164
0.8606983883 02784694066 -0.8124975178 0.0792417966
0.0440020125 0.1168649339 0.0310264084 0.1760779901
Sol.2 | 03357311285 0.3491354953 Sol.9 | 0.3367208030 02796624109
0.1015972384 0.3388481591 0.1420207287 0.0856442848
0.1959807715 0.0324919199 -0.1427721429 0.2660909007
0.5298149584 0.2853430985 -0.8435618534 0.0247927741
0.0069016628 0.3380473798 0.0349599086 01028940828
Sol.3 | 03273318676 0.3206895328 Sol. 10 | 0.4224008806 02712921597
0.0396552907 0.2986524101 -0.1889079092 0.0011063024
0.5208586308 0.0741335715 0.3561384679 0.1890226787
-0.4442729860 0.1331193703 -0.7390069308 0.1414158627
0.0065409250 0.3989667326 0.0237712845 0.1106294577
Sol.4 | 0.1626252165 0.0298611415 Sol. 11 | 0.2395706253 02975483261
-0.3017126041 0.2240794988 0.4637567881 0.2847994096
-0.1783889066 0.2301576033 0.0154833612 0.1413409742
07137275251 0.0971666758 -0.5861394961 0.02122094995
0.0278993324 0.3805446921 0.0177082676 03056084889
Sol.5 | 03221051215 0.3510711865 Sol. 12 | 0.1671662105 0.1245889560
02525051386 03544681189 02358035522 0.0243717563
-0.4189363818 0.0165037731 -0.1121274369 02079331799
-0.6331604264 0.1035503586 -0.7953186041 0.1717817639
0.0174557111 0.1177149436 0.0273318802 0.1555592488
Sol. 6 | 0.0429158354 0.0446360606 Sol. 13 | 0.4586478321 03386346204
0.0811055468 02478304056 -0.1011456067 0.1204471133
-0.2662203512 0.2040211938 -0.0115635220 0.1963075419
-0.7711670069 0.0243731377 -0.75891034603 | 0.1702524624
0.0303442027 0.3396013173 0.02454099949 0.0117867162
Sol. 7 | 07276812579 0.3738656386 Sol. 14 | 0.4064810686 03392512646
-0.4551167619 0.0304080605 0.0073246701 0.1784649874
-0.2113909448 0.0838221369 0.0846953560 0.1843099545
-0.4895999565 0.1776147414 0.6726843741 0.0310865463
0.0075452271 0.3755303113 00234023812 0.1365650475
as whenever we wish to choose between two nondominated Sett = 0.
solutions (for instance, after applying crossover while choosing Randomly generate starting solutions P(t) on a given
between parents and offspring and/or after applying mutation). domain.

Several other criteria can be taken into account. For instance,
we wish to obtain a very low value (very close to zero) for
some of the objectives, and then we can accordingly choose
our solution. However, this requires detailed knowledge about
the objectives.

We consider as the current population of the next iteration
the population obtained by unifying the current population of
the previous iteration and the external set. The main steps of the
evolutionary approach used are presented in Algorithm 2. The
termination criteria of Algorithm 2 refer to a specified number
of iterations.

Algorithm 2 The iterative evolutionary steps proposed for
solving nonlinear equations systems.
Step 1.

Select all the nondominated solutions from P(¢) and store
them into the external set ' containing the nondominated
solutions found so far.
If the cardinal of E exceeds the maximum allowed size,
reduce the number of solutions with respect to the sum of
the absolute values of the objectives.

Step 2.
Step 2.1. Apply crossover (with a given probability) on
P(t) U E until a number of new individuals equal to the
size of P(t) are obtained.
Let Q(t) be the set obtained from the best between the so-
lutions that are combined and the solutions obtained after
recombination (Pareto domination relation is applied).
Step 2.2. Mutate (with a given probability) all the indivi-
duals from Q(t).
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Fig. 8. Nondominated solutions obtained for the chemical equilibrium appli-
cation. (a) Solutions whose sum of the absolute values of the objective functions
is less than or equal to 1. (b) Sum of the absolute values of the objective
functions for all the nondominated solutions obtained.

Step 2.3. Update F with the nondominated individuals
from P(t) | J Q(t) and apply the reduction procedure if the
allowed size of E is exceeded.
Step 2.4. Sett =1t + 1.
P(t) = Q).
Step 3.
If the termination criteria are reached, go to step 4.
Otherwise, go to step 2.
Step 4.
Print E.

V. EXPERIMENTS AND RESULTS

This section reports several experiments and comparisons
using the proposed approach. Some well-known applications
are also considered in the subsequent section.

A. llustrative Example

In this example, a simple equations system (two equations) is
used, which is having more than one solution, and the ability of
the proposed approach is illustrated to detect several solutions
in a single run. The following equations system is considered:

22—y =0
1—]z—y|=0.

The two functions corresponding to the transformed problem
into a multiobjective optimization problem are depicted in
Fig. 3.

TABLE XIII
COEFFICIENTS aj; FOR THE KINEMATIC EXAMPLE KIN2

-0.249150680 +0.125016350 -0.635550077 +1.48947730
+1.609135400 -0.686607360 -0.115719920 +0.23062341
+0.279423430 -0.119228120 -0.666404480 +1.32810730
+1.434801600 -0.719940470 +0.110362110 -0.25864503
+0.000000000 -0.432419270 +0.290702030 +1.16517200
+0.400263840 +0.000000000 +1.258776700 -0.26908494
-0.800527680 +0.000000000 -0.629388360 +0.53816987
+0.000000000 -0.864838550 +0.581404060 +0.58258598
+0.074052388 -0.037157270 +0.195946620 -0.20816985
-0.083050031 +0.035436896 -1.228034200 +2.68683200
-0.386159610 +0.085383482 +0.000000000 -0.69910317
-0.755266030 +0.000000000 -0.079034221 +0.35744413
+0.504201680 -0.039251967 +0.026387877 +1.24991170
-1.091628700 +0.000000000 -0.057131430 +1.46773600
+0.000000000 -0.432419270 -1.162808100 +1.16517200
+0.049207290 +0.000000000 +1.258776700 +1.07633970
+0.049207290 +0.013873010 +2.162575000 -0.69686809
TABLE XIV

PARAMETERS USED BY THE EVOLUTIONARY APPROACH
FOR THE KINEMATIC APPLICATION

Parameter Value
Population size 500
External set size 200
Number of generations 1000
Sigma (for mutation) 0.5
Tournament size 5

The parameter values used by the evolutionary approach are
given in Table I.

After applying the evolutionary approach, several nondom-
inated solutions are obtained. Some of the solutions are pre-
sented in Table II, and the Pareto curve is depicted in Fig. 4.

The sum of the absolute values of the objectives is plotted
in Fig. 5.

B. Numerical Comparisons

1) Two Equations Systems: We considered the same prob-
lems (Examples 1 and 2) used by Effati and Nazemi [18]. The
algorithm proposed by Effati and Nazemi is compared with
Newton’s method, the secant method, and Broyden’s method.
Only systems of two equations were considered by Effati and
Nazemi. The parameters used by the evolutionary approach for
Examples 1 and 2 are given in Table III.

Example 1: Consider the following nonlinear system:

fi(z1, z2) = cos(2x1) — cos(2z2) — 0.4 =0
fo(z1, 22) = 2(z2 — x1) + sin(2z2) —sin(2z1) — 1.2 = 0.

The results obtained by applying Newton, secant, Broyden,
and Effati methods and the proposed method are presented in
Table IV.

Example 2: The following system is considered:

fl(l‘l,xz) =e"t +r29—1=0
f2($1,562) = sin(xlzg) + 1+ X2 — 1=0.

The results obtained by Effati and Nazemi’s method and by
the evolutionary approach are given in Table V.
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TABLE XV
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE KINEMATIC APPLICATION KIN2
Solution | Variables values Functions values Solution | Variables values Functions values
Sol. 1 -0.0625820337 0.3911967824 Sol. 6 -0.3064809352 0.9060378884
0.7777446281 0.3925758963 -0.0056167467 0.7492384561
-0.0503725828 0.8526542737 -0.5007294639 0.7403485971
0.3805368959 0.5424213097 -0.0944531990 0.4782413752
-0.5592587603 0.7742116224 -0.7161265376 0.8882665877
-0.6988338863 0.1537105718 0.6371096100 0.2081000785
0.3963927675 0.9116019977 0.4792262814 0.7690562864
0.0861763643 0.1519175234 -0.4680908930 0.4979341279
Sol. 2 -0.1564353525 0.7723864643 Sol. 7 -0.5739275815 0.5286935399
0.4507122320 0.5832167209 0.3767142036 0.8412047222
0.4622139796 0.0087255337 0.1299295442 0.3390733979
-0.8818348503 0.2031050697 -0.8025240903 0.2643422170
-0.6522824284 0.6056929403 -0.3026761756 0.5162506493
0.4082826235 0.3663682493 0.1226779594 0.2659449070
0.4718261386 0.3532359802 0.7855891471 0.4029986127
-0.5070478474 0.4646334692 -0.1240877403 0.5347985046
Sol. 3 -0.5618177814 0.0336943748 Sol. 8 0.7822939914 0.1443884130
0.8473813517 0.2323541264 -0.4935865657 0.1116189082
0.2226897354 0.9432510244 0.8029653752 0.3487762429
-0.0846064846 0.3663913629 0.0804385674 0.1428116670
-0.7914861841 0.0081327333 0.9223437373 0.3802921343
-0.4111014166 0.2206688453 0.0296919251 0.5311414488
0.3056098314 0.624967041 0.7980078255 0.0338066582
0.4290046184 0.4690397335 -0.8324923146 0.0083023855
Sol. 4 0.0608363294 0.7409305497 Sol. 9 -0.7461742647 0.0762392460
0.5053398770 0.6356638946 0.6057926381 0.2265885749
0.3301025811 0.7726033233 0.9271482376 0.0694226055
-0.3441350935 0.8133740699 0.2664085959 0.6991957509
-0.2611454909 0.0176109130 -0.4794066217 0.0290725466
-0.1335439441 0.0929407653 -0.3302191010 0.1921690687
0.7518856650 0.2565663633 0.7692157072 0.4459273853
-0.3711959678 0.260158013 -0.1642217317 0.7592540224
Sol. 5 -0.7461742647 0.1552859413 Sol. 10 -0.6205399028 0.1461818771
0.5365985698 0.4712662401 0.6846519932 0.4555568728
0.4907094198 0.7461140527 -0.9933817672 0.0102591212
0.1144124666 0.6917033188 -0.0541621937 0.9914691316
-0.5433290610 0.9909917470 -0.0748152730 0.2920414356
0.3443841680 0.0271473496 0.37913950333 0.5909270772
0.6758924483 0.0900355495 -0.4826393335 0.8366810215
-0.3341809018 0.20247922410 -0.7830381952 0.7918662138

C. Systems Having More Than Two Equations

As evident from the above experiment results, the pro-
posed approach has obtained better results as compared to the
other established techniques. It is to be noted that Effati and
Nazemi’s technique was only applied for two equations sys-
tems. Since our approach was promising as compared to Effati
and Nazemi’s technique (which, in turn, was outperforming
some other standard known techniques), we decided to extend
our approach for more complex equations systems. The exam-
ples considered in the following section are listed in Table VI
and are well-known difficult benchmarks for numerical analysis
researchers.

1) Interval Arithmetic Benchmark: We consider one bench-
mark problem proposed from interval arithmetic [29], [33] (see

also [27]). The benchmark consists of the following system of
equations:

0 =21 —0.25428722 — 0.18324757x42329
0 =29 — 0.37842197 — 0.16275449z1 21076
0 =23 —0.27162577 — 0.16955071z1 22210

0= x4 —0.19807914 — 0.15585316x7x1%6
0 = x5 — 0.44166728 — 0.19950920z7 623
0 = z¢ — 0.14654113 — 0.18922793z3x5710
0 =27 —0.42937161 — 0.21180486z2x525
0 = zg — 0.07056438 — 0.17081208x1x7x6

= T9 — 0.34504906 — 01961274093101‘6588
0 =x10 — 0.42651102 — 0.21466544x 42871 .
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Fig. 9. Nondominated solutions obtained for the kinematic application kin2.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 3.5. (b) Sum of the absolute values of the objective functions
for all the nondominated solutions obtained.

Parameters used by the evolutionary approach are listed in
Table VII. Some of the nondominated solutions obtained as
well as the function values (which represent the values of the
system’s equations obtained by replacing the variable values)
are presented in Table VIII. The sum of the absolute values
of the objectives for the nondominated solutions obtained is
depicted in Fig. 6. In Fig. 6(a), the nondominated solutions for
which the sum of objectives (in absolute values) is less than or
equal to 2.5 are plotted. In Fig. 6(b), the sum of objectives (in
absolute values) for all the nondominated solutions obtained is
depicted.

2) Neurophysiology Application: We  considered the
example proposed in [50], which consisted of the following
equations:

2?2+ a23 =1
r2+zi=1

m5x§ + xﬁxi =
x5:r£f + xm:% = Co
x5x1x§ + mgasixg = C3
x5x%m3 + x6x§x4 =cC4q.

The constants ¢; can be randomly chosen. In our experi-
ments, we considered c; = 0,7 = 1,...,4.In[27], this problem
is used to show the limitations of Newton’s method for which
the running time exponentially increases with the size of the
initial intervals. We considered the following values for the
parameters used by the evolutionary approach as given in
Table IX.

TABLE XVI
PARAMETERS USED BY THE EVOLUTIONARY APPROACH
FOR THE COMBUSTION APPLICATION

Parameter Value
Population size 500
External set size 200
Number of generations 300
Sigma (for mutation) 0.1
Tournament size 5

Some of the nondominated solutions obtained by our ap-
proach as well as the values of the objective functions for these
values are presented in Table X. The sum of the absolute values
of the objectives for the nondominated solutions obtained is
depicted in Fig. 7. In Fig. 7(a), the nondominated solutions for
which the sum of objectives (in absolute values) is less than or
equal to 1 are plotted. In Fig. 7(b), the sum of the objectives (in
absolute values) for all the nondominated solutions obtained is
depicted.

3) Chemical Equilibrium Application: We consider the
chemical equilibrium system as given by the following [32]
(see also [27]):

122+ 21 — 325 =0
20119 + 1 + CI?Q,T% + Rgxo — Rxsy
+2R1023 + Rrwows + Rozozy =0
21‘2.13% + 2R5$§ — 8x5 + Rgxr3z + Ryxox3 =0
Rgxoxd + 21’2 —4Rx5 =0
Il(IQ + 1) + Rlol’g + IQ?E% + Rgl'g
+R5£L’§ + xﬁ -1+ Rgl'g + R7£L’2$3 + R9$21’4 =0

where

= Va0
Ry = 000001799

0 00618155
Rg = —F

V40
0.00003846
Ry = VTURRE

The parameters used by the evolutionary approach are
presented in Table XI. Some of the nondominated solutions
obtained by the evolutionary approach for the chemical equi-
librium application are depicted in Table XII.

The sum of the absolute values of the objectives for the non-
dominated solutions obtained is depicted in Fig. 8. In Fig. 8(a),
the nondominated solutions for which the sum of objectives
(in absolute values) is less than or equal to 1 are plotted. In
Fig. 8(b), the sum of the objectives (in absolute values) for all
the nondominated solutions obtained is depicted.

4) Kinematic Application: We consider the kinematic ap-
plication kin2 as introduced in [34] (see also [27]), which
describes the inverse position problem for a six-revolute-joint



710

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 3, MAY 2008

TABLE XVII
EXAMPLES OF NONDOMINATED SOLUTIONS OBTAINED FOR THE COMBUSTION APPLICATION
Solution | Variables values Functions values Solution | Variables values Functions values
Sol. 1 -0.0552429896 0.0274133878 Sol. 5 0.0348357700 0.0289865877
-0.0023377533 0.0841848522 0.1092386108 0.2167589209
0.0455880930 0.1482418893 0.1250085306 0.0089588165
-0.1287029472 0.0839188567 -0.0107958218 0.1683941428
0.0539771728 0.0030517851 -0.1399310251 0.0012135380
-0.0151036079 0.0000109317 -0.0177642059 0.0238661499
0.1063159019 0.0165644486 -0.0787941605 0.0001165497
0.0386267592 0.0025184283 0.0917803902 0.0043547546
-0.1144905135 0.0001291515 -0.0422169082 0.0038054137
0.0872294353 0.0000003019 -0.0302349392 0.0004156978
Sol. 2 -0.0338378558 0.0008794626 Sol. 6 0.0172348545 0.0202656999
0.0185669333 0.1035086837 -0.0049839785 0.0113645412
0.0534924988 0.0955626197 -0.0036835674 0.0052992119
-0.0392784517 0.2441423777 -0.0401647761 0.0609700462
0.0183882247 0.0011449995 0.0334303826 0.0002970384
0.0005245892 0.0006894619 -0.0049589041 0.0000496805
-0.1024269629 0.0015427967 0.0505724112 0.0016132092
0.0500461848 0.0018100789 -0.0076509738 0.0000634846
-0.1013361102 0.0006282589 -0.1141678724 0.0000858910
0.0404252678 0.0000116649 0.0544069796 0.0000004281
Sol. 3 -0.0103209333 0.1170689295 Sol. 7 -0.1443475355 0.0460704291
0.0021201108 0.0726549501 0.0137124749 0.0928317803
0.1207182825 0.2023013696 0.0532523778 0.0470659155
-0.0263026679 0.0155834694 -0.0407593315 0.0014507164
0.0044219824 0.0001065214 0.0053340672 0.0208362107
-0.0850838579 0.0000089983 0.0390841261 0.0003760600
0.0053645992 0.0006918303 0.0196593075 0.0016613231
-0.0480333324 0.0012459181 0.0396094025 0.0076868554
0.0732269061 0.0000218860 0.0463257617 0.0019793648
0.1059498141 0.0000000463 -0.0921334590 0.0000271419
Sol. 4 0.0177198747 0.0262522791 Sol. 8 0.1612054472 0.0966899590
0.0030100424 0.0644480331 0.1001108591 0.0844303598
0.0676669725 0.1379528266 -0.0303525758 0.0520483724
-0.0408039903 0.286269853 0.0015541591 0.0511277742
0.0852565598 0.0003139895 0.0464169709 0.0259871938
0.0536056660 0.0000181153 0.0906816701 0.0200443591
0.1635419218 0.0016649656 -0.0263359667 0.0000024154
-0.0031889394 0.0011990507 -0.0540477839 0.0048929924
-0.1390794276 0.0000533461 0.0577884947 0.0161384122
0.0275601661 0.0000001605 -0.121281367 0.0016156306

problem in mechanics. The equations describe a denser con-
straint system and are given as follows:

2+ x?_H -1=0

G1;T1T3 + G2;T1T4 + 3, T2T3 + 4, T2T4+

A5;T2T7 + Q6 T5T8 + A7iTeT7 + g TeTg+

Q9iT1 + @10iT2 + 11;T3 + A12;T4 + A13;T5 + A14;T6+
a15;x7 + a16;08 + arr; = 0

1 <i<4.

The coefficients ax;, 1 <k <17, 1 <4 <4, are given in
Table XIII.

The parameters used by the evolutionary approach for the ki-
nematic example kin2 are presented in Table XIV. Some of the
nondominated solutions obtained by the evolutionary approach
for the kinematic example kin2 are presented in Table XV.

The sum of the absolute values of the objectives for the
nondominated solutions obtained for the kinematic application
kin2 is depicted in Fig. 9. In Fig. 9(a), the nondominated

solutions for which the sum of objectives (in absolute values)
is less than or equal to 1 are plotted. In Fig. 9(b), the sum
of the objectives (in absolute values) for all the nondominated
solutions obtained is depicted.

5) Combustion Application: We consider the combustion
problem for a temperature of 3000 °C as proposed in [35] (see
also [27]). The problem is described by the following sparse
system of equations:

XTo + 21’6 + X9 + 21’10 = 1075

r3 + Tg =3-10"°

x1 + 3+ 225 + 228 + 9 + T10 =5.-10"°
T4 + 207 = 107

0.5140437 - 10 "25 = 22

0.1006932 - 10 %z = 223

0.7816278 - 10~ Yz, = 22

0.1496236 - 1076588 =13

0.6194411 - 10~ g — 1229

0.2089296 - 10~ 1421y = 223
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The parameters used by the evolutionary approach for the
combustion application are presented in Table XVI. Some of the
nondominated solutions obtained by the evolutionary approach
are presented in Table XVIIL.

The sum of the absolute values of the objectives for the non-
dominated solutions obtained for the combustion application is
depicted in Fig. 10. In Fig. 10(a), the nondominated solutions
for which the sum of objectives (in absolute values) is less than
or equal to 1 are plotted. In Fig. 10(b), the sum of the objectives
(in absolute values) for all the nondominated solutions obtained
is depicted.

6) Economics Modeling Application: The following mod-
eling problem is considered as difficult and can be scaled up
to arbitrary dimensions [35]. The problem is given by the
following system of equations:

n—k—1
(xk—|— > xixi+k>xn—ck:0, 1<k<n-1

=1
n—1
Z z;+1=0.
=1

The constants c; can be randomly chosen. We considered
the value O for the constants in our experiments and the case of
20 equations.

The parameters used by the evolutionary approach for the
combustion application are presented in Table XVIII. Some
of the nondominated solutions obtained by the evolutionary
approach are presented in Table XIX.

The sum of the absolute values of the objectives for the non-
dominated solutions obtained for the combustion application
is depicted in Fig. 10. In Fig. 11(a), the nondominated solutions
for which the sum of objectives (in absolute values) is less
than or equal to 1.5 are plotted. In Fig. 11(b), the sum of
the objectives (in absolute values) for all the nondominated
solutions obtained is depicted.

VI. DISCUSSIONS AND CONCLUSION

The proposed approach seems to be very efficient for solving
equations systems. We analyzed the case of nonlinear equations
systems. We first compared our approach for some simple equa-
tions systems having only two equations that were recently used
for analyzing the performance of a new proposed method. The
results obtained using the proposed evolutionary multiobjective
optimization approach are very promising, clearly outperform-
ing the new technique proposed by Effati and Nazemi and some
of the classical methods established in the literature, namely,
Newton, Broyden, and secant methods.

The running time required for our algorithm to converge
is presented in Table XX. It is measured in seconds, and the
experiments were run on a 2.4-GHz Intel Duo Core CPU with
2-GB RAM.

It is worth to mention that our approach obtains several
nondominated solutions in one run (this number was kept
constant, less than or equal to 200). Most of the systems used in
the experiments have more than one solution (even hundreds

Sum of the objective functions

A A AN AL A
\1; i NP VA VAR "‘x»’f‘\‘,‘-f/\ A
0 10 20 30 40
Solutions

(a)

Sum of the objective functions

i NU WW M WM

0 5

Solutions

(b)

Fig. 10. Nondominated solutions obtained for the combustion application.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 0.5. (b) Sum of the absolute values of the objective functions
for all the nondominated solutions obtained.

TABLE XVIII
PARAMETERS USED BY THE EVOLUTIONARY APPROACH
FOR THE ECONOMICS APPLICATION

Parameter Value
Population size 500
External set size 200
Number of generations 300
Sigma (for mutation) 0.1
Tournament size 5

of solutions can be found). Therefore, our approach detects
multiple solutions in one run. If we consider that Newton-like
methods obtain a single solution in 0.5 s, then 200 solutions will
be obtained in 100 s. Also, these solutions are compared after
the final run, and not all of them will be kept as final solutions.
This means that more than 200 runs must be performed to
obtain 200 solutions. For Examples 1 and 2, we are not aware
of the running time required by Effati and Nazemi’s algorithm.
However, in Effati and Nazemi’s approach, the search space is
divided into 10000 and 140 000 subsets, respectively, and it is
obvious that it cannot be done in a few seconds.

The promising results obtained by our approach for two-
equation systems were the starting point, and the approach was
extended for high-dimensional nonlinear equations systems.
We also used some of the most well known applications such
as application from interval arithmetic benchmarks, applica-
tion from neuropsychology, chemical equilibrium application,
kinematic application, combustion application, and economics
modeling. All these applications consist of systems having
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TABLE XIX
EXAMPLES OF SOLUTIONS OBTAINED BY THE EVOLUTIONARY APPROACH FOR THE ECONOMICS MODELING APPLICATION E2

Solution Variables values Functions values Solution Variables values Functions values

Sol. 1 -0.1639324 1.94E-5 Sol. 3 0.0936580 0.0004909
-0.3813209 9.73E-5 -0.1113572 1.66E-5
0.2242448 0.0001201 -0.0652960 0.0001413
-0.0755094 2.39E-5 -0.0274100 0.0001387
0.1171098 5.61E-5 -0.0515078 1.50E-5
0.0174083 3.89E-5 -0.0525712 0.0001687
-0.0594358 3.90E-5 0.1674281 0.0006289
-0.2218284 9.31E-5 -0.0284058 7.11E-6
0.1856304 0.0001294 -0.1587341 0.0002428
-0.2653962 5.01E-5 -0.1284569 0.0001981
-0.3712114 0.0001009 -0.1326800 0.0002817
-0.3440810 0.0001601 -0.1138290 0.0002442
-0.1060168 6.32E-6 -0.1430544 0.0001696
0.0218564 7.96E-6 0.0521726 0.0001335
-0.2028748 7.66E-5 -0.2608338 0.0005227
0.0533728 2.35E-5 -0.1602811 0.0003038
-0.0587111 2.21E-5 -0.1141750 0.0002455
0.0057098 3.34E-6 -0.1677992 0.0003751
-0.0149290 6.12E-6 -0.1159721 0.0002434
-0.0004102 0.4110599 0.0020995 0.3975329

Sol. 2 -0.2071340 0.0050496 Sol. 4 -0.2686292 0.0015673
-0.2251718 0.0003158 0.3391340 0.0028117
-0.0910972 0.0035983 0.0732562 2.58E-5
-0.0028412 0.0044357 0.0797120 0.0013986
-0.2110337 0.0117217 -0.1109362 0.0003991
0.4501557 0.0153466 0.0177894 0.0014187
-0.0263800 0.0005013 0.4220681 0.0023095
0.0086212 0.0001027 -0.0583526 4.67E-6
-0.2065700 0.0076698 -0.2610232 0.0017655
0.1663536 0.0045637 -0.2838340 0.0014891
-0.1450036 0.0009652 -0.3579828 0.0028633
-0.0743482 8.36E-6 0.0214270 0.0014185
-0.2007066 0.0018678 -0.6282558 0.0035229
-0.1451752 0.0016314 0.2185146 0.0010139
-0.2078702 0.0044618 -0.0897853 0.0008279
-0.2750080 0.0084773 -0.0178795 0.0001595
-0.0422618 0.0014519 -0.2514783 0.0010944
-0.0602186 0.0024115 -0.0546466 0.0002984
0.0643765 0.0021106 0.0275084 0.0001323
-0.0327867 0.2107177 0.0048114 0.2261284

a higher number of equations—10 equations for the interval
arithmetic benchmarks, 6 equations for the neuropsychology
example, 5 equations for the chemical equilibrium application,
8 equations for the kinematic application, 10 equations for the
combustion application, and 20 equations for the economics
modeling.

Since we transformed a system of equations into a multi-
objective optimization problem, whose number of objectives
is equal to the number of equations contained by the corre-
sponding system, our task is to deal with complicated high-
dimensional optimization problems. The goal is to obtain values
as close to zero as possible for each of the involved objectives.

As evident from the obtained empirical results, the proposed
approach is very much appealing for solving high-dimensional
equations systems. As a measure of quality for the solutions
obtained, the sum of the absolute values of the objectives
(which are the modified equations of the initial system) is con-
sidered. The closer the value of this sum to zero, the better the
solution.

From the graphical illustrations provided in the manuscript,
it can be deduced that the proposed approach could obtain
very good results even for some complicated systems such as
combustion application, neuropsychology application, chemi-
cal equilibrium application, and economic modeling.
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Fig. 11. Nondominated solutions obtained for the economics application.
(a) Solutions whose sum of the absolute values of the objective functions is less
than or equal to 1.5. (b) Sum of the absolute values of the objective functions
for all the nondominated solutions obtained.

TABLE XX
CPU TIME REQUIRED BY THE EVOLUTIONARY ALGORITHM
FOR ALL THE CONSIDERED BENCHMARKS

Benchmark Running time (s)
Example 1 5.14

Example 2 5.09

Interval il 39.07
Neurophysiology 28.90

Chemical equilibrium 32.71
Kinematics kin2 221.29
Combustion 151.12
Economics 640.92

The proposed method could be extended for more higher
dimensional systems, although this will also involve increased
computational complexity. In a similar manner, we can also
solve inequality systems and systems of differential equations,
which are part of our future research work.
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