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Abstract—In the normal image thresholding methods based on
two-dimensional histogram, the edge information of the regions
is not maintained because of the local averaging activity used.
Moreover, the computation time increases with the increase in
the level of thresholds. This paper focusses on retaining more
edge information by calculating the image entropy along the
diagonal regions of the gray level co-occurrence matrix inspired
from the partitioned design structure matrix, which is a novel
idea. In addition, the key to our success is the theoretical inves-
tigation of a novel diagonal class entropy (DCE) concept that
utilizes the minimum area for computation. The benefits of the
proposed method are: 1) improved results; 2) efficient to preserve
more precise shape of the edges; and 3) the computation time
decreases with the increase in the threshold levels. The optimal
thresholds are obtained by minimizing the DCE using coral reef
optimization (CRO). A first hand fitness function for multilevel
image thresholding is derived. The fight for space and the effi-
cient reproduction characteristics of the CRO makes it attractive
for this application. Benchmark images from the Berkley seg-
mentation dataset are taken to experiment. Our results are
compared with other state-of-the-art thresholding methods. The
results obtained are encouraging and may set the path for further
investigation in the domain of multilevel thresholding.

Index Terms—Coral reef optimization (CRO), design structure
matrix (DSM), entropy, gray level co-occurrence matrix (GLCM),
multilevel thresholding.

I. INTRODUCTION

IMAGE segmentation is one of the vital steps in image
processing. Many segmentation techniques are reported in

the literature. Thresholding is one of the most normally used
method. Thresholding is performed by dividing the pixels
based on gray level information using different approaches.
Sankur and Sezgin [1] classified the thresholding techniques
into six categories depending on the information utilized.
Histogram-based approaches utilize the curvature of the image
histogram for determining the thresholds. Clustering-based
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approach groups the image into clusters, as background (BG)
and foreground (FG) and then determines the threshold values.
Object attributes-based approaches use the fuzzy similarity for
thresholding.

Entropy-based approaches use the entropy of BG–FG
regions for determining the thresholds. Spatial correlation
approaches use the correlation between pixels for threshold-
ing. In this paper, we propose a novel approach for image
thresholding-based on both the entropy and spatial correlation.

Images with fewer details are thresholded using bi-level
thresholding. However, images with larger details require
multilevel thresholding. The problem of multilevel threshold-
ing becomes complex when the number of threshold value
increases. For any gray image, the number of gray levels
varies from 1 to 256 (assuming 8-bit encoding). As the
level of threshold increases, the search space dimension also
increases in traditional methods. This warrants for a more
appropriate technique to solve such problems. Now, evolu-
tionary computing techniques have made their presence felt
by solving such complex problems, especially when the search
space dimension is very large. In this context, several thresh-
olding techniques are proposed for multilevel thresholding,
which uses different objective functions and different evo-
lutionary computing techniques. Some of them are genetic
algorithm [2], particle swarm optimization (PSO) [3], [4], ant
colony optimization [5], harmony search [6], simulated anneal-
ing (SA) [7], and differential evolution (DE) [8] to name a few.

In this paper, we have experimented with one such
latest evolutionary computing technique named coral reef
optimization (CRO), which is based on the imitation of coral
reproduction and coral reef formation [9]. The motivation
behind the selection of the CRO for this application is its fight
for space and efficient reproduction characteristics. Further,
the application of CRO to multilevel thresholding problem is
new. The CRO in its basic version is inspired by SA. It has
mainly focused on the exploitation part of evolutionary algo-
rithms. The main focus of this paper is to introduce a new
objective function for multilevel thresholding. Researchers
can freely choose any proven optimization technique for fur-
ther investigation into the proposed objective function. Here,
a new objective function is formulated to obtain optimal
multiple threshold values. The objective function is derived
from DCE. The DCE feature is extracted from the gray level
co-occurrence matrix (GLCM) as a feature space of the image.
The local transition entropies of BG and FG computed in local
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quadrants of the GLCM are summed up to give DCE. The
optimum thresholds are obtained when DCE is minimized.
For choosing the regions of GLCM to compute DCE, we use
the concept of partitioned DSM. To the best of our knowl-
edge, this application of DSM to image processing is new.
The proposed method is validated using benchmark images
from Berkley Segmentation Dataset. The results are compared
with other state-of-the-art thresholding methods. It is observed
that the computation time decreases with increase in levels of
thresholds.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the proposed
method. Section IV presents the results and discussions.
Finally, Section V draws the concluding remarks of this paper.

II. RELATED WORK

The research in the area of multilevel thresholding is
still ongoing. We can also observe the application of dif-
ferent variations of evolutionary computation techniques for
segmentation [10]. Roy et al. [11] presented a compara-
tive analysis of multilevel thresholding schemes based on
cuckoo search optimization technique. The authors, in their
work, focused on the minimum cross-entropy criterion for
thresholding. Raja et al. [12] implemented an improved PSO-
based multilevel thresholding technique. The authors used
Otsu’s function for breast thermal images infected with cancer.
They used the one-dimensional (1-D) histogram of the image
and obtained the optimum thresholds by maximizing Otsu’s
criteria of between class variance.

The concept of entropy was explained in [13]–[15].
Brajevic and Tuba [16] applied CS and FF algorithms for the
multilevel image thresholding problem. They used two differ-
ent fitness functions, Kapur’s maximum entropy thresholding
criteria and multi Otsu between-class variance criteria for
optimization. Kurban et al. [17] used Kapur’s entropy to
present a comparative study on evolutionary and swarm-based
methods for multilevel color image thresholding. Liu et al. [18]
proposed a modified PSO for multilevel thresholding by
maximizing the Otsu’s objective function.

Li et al. [19], [20] used dynamic-context coopera-
tive quantum-behaved, partitioned and cooperative quantum-
behaved PSO for medical image segmentation. They used
these methods to optimize the parameters of Otsu segmen-
tation for dividing the pixels into three or four classes only.
The authors insisted on applying their methods to different
kinds of segmentation problems. However, they have used 1-D
Otsu segmentation method for medical images. Ali et al. [21]
proposed a multilevel image thresholding technique by syner-
getic DE. It employs two criteria entropy and approximation of
the normalized histogram of an image by combining Gaussian
distribution to find the optimal thresholds.

From the above study, it is observed that the Otsu’s
method used for multilevel thresholding is based on the
1-D histogram. However, the performance of the Otsu
scheme based on 1-D histogram may worsen for images with
complex boundaries as the spatial correlation between the
neighboring pixels is not considered. Therefore, researchers

have proposed Otsu’s method based on two-dimensional
(2-D) histogram for bi-level image thresholding [22], [23].
A 2-D histogram is constructed using gray and the mean gray
values. Then the maximum between class variance of object
and BG area along the diagonal is computed to obtain the
threshold value. However, the method is not efficient, as the
local averaging is computed. When the image has complex
boundaries, threshold selection by using the 2-D histogram
method suffers from these flaws: 1) the internal area along
the diagonal is not homogenous; 2) the shape of edge of
the image is also not clear; and 3) the transition information
between the FG and the BG area which is also available in
the off-diagonal region is not taken into account.

This has motivated us to investigate a new algorithm for
multilevel image thresholding. Even though several fitness
functions are formulated derived from the entropy [24]–[30],
still there is scope for new functions to be proposed for impro-
vising the thresholding results. An automatic thresholding
technique using entropy is also implemented in [26] and [27].
Many researchers have proposed methods of thresholding
based on entropy derived from GLCM. Chang et al. [28] inves-
tigated thresholding based on Shannon’s entropy and relative
entropy. They used GLCM to compute local, joint, and global
entropy for thresholding. A new class of entropy named DCE
is introduced in this paper. The DCE feature is extracted from
the GLCM as a feature space of the image. The GLCM regions
are chosen based on partitioned DSM. The idea of partitioned
DSM is used for the first time in image processing application.

III. PROPOSED METHOD

A block diagram of our proposed method is displayed
in Fig. 1.

An image is considered as the input. The number of
thresholds are taken as input from the user. The normalized
GLCM is computed. The proposed objective function based on
DCE is optimized using CRO. The optimal threshold values
are obtained when DCE is minimized. The program auto-
matically generates the thresholded output image. We have
implemented the Otsu’s multilevel threshold formula based
on 2-D histogram for a comparison. We have also com-
pared our results with our implementations of multilevel
thresholding using Kapur’s entropy [31]. Further, some cur-
rent segmentation work based on similar entropic definitions,
one nonthresholding-based method along with visual saliency
map-based segmentation is also considered for comparison.
A brief explanation on CRO is presented below.

A. Coral Reef Optimization

CRO suggested by Salcedo-Sanz et al. [9] is inspired by
modeling and simulating corals formation and reproduction.
Let Ã represent a reef model containing N×M square grids.
Each square (x, y) of Ã can allocate a coral Ĉx,y representing
different solutions to a problem. Each coral can be repre-
sented as strings of numbers in a specified alphabet Ŏ. Initially,
some squares in Ã are randomly assigned to be occupied by
corals. Some squares are intentionally kept empty so that new
corals can stay and develop. The ratio between free to total
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Fig. 1. Block diagram of our proposed method.

number of squares is an important parameter p. Usually, it
is in the range [0, 1]. Each coral is associated with a fitness
function f (Ĉx,y): Ŏ→R that is related to the problem objec-
tive function. The reef continues to grow as long as healthier
corals exist and less healthy corals are discarded. A predeter-
mined fraction (Fb) of existing corals is randomly selected as
broadcast spawners and the remaining (1− Fb) as brooders.

In each iteration, a pair of corals from the spawners are
selected (using any standard selection algorithm, e.g., Roulette
wheel selection) to form larva by crossover. It is to be noted
that a pair of corals can participate only once, for crossover, in
each iteration. The brooders form larva using random mutation
of the brooding-reproductive corals. This is used to achieve
mutation for local searching. The larva formed from both the
processes try to stay and develop in the reef. Each larva tries
for a predetermined number of times (denoted as k) to occupy
a square. When the patch is empty, the coral develops there.
But if it is occupied by another coral, then the new larva fights
for the space on the basis of its fitness function. If a larva fails
to occupy, within the number of times, it is discarded.

The whole set of corals are sorted based on fitness values.
A predetermined fraction Fa duplicates itself using budding
or fragmentation and tries to stay in a different portion of the
reef. At the end of iteration, with a predetermined probability
(Pd), a fraction of corals is depredated thus creating space for
new corals. This fraction is indicated as Fd on the basis of
corals having worse fitness values. It is to be noted that any
coral can be repeated for at most τ times in the reef. It is
then eliminated and the space is freed. The above steps are
repeated until the stopping criteria is met.

B. Diagonal Class Entropy

As we know, a single threshold value divides the GLCM
into four quadrants. The four quadrants are classified as two
classes: 1) local and 2) joint. The local quadrants conform to
transitions in the BG or object only. The joint quadrants con-
form to transitions through the boundaries between BG and
object or FG. The local transition entropies of BG and FG
computed in local quadrants of the GLCM are summed up to
give DCE. This notion is extended for multilevel thresholding.
However, for choosing the regions of GLCM for multilevel
thresholding, we have used here the concept of partitioned
DSM. For higher levels of thresholding, e.g., from two to
five, the BG and FG regions in the GLCM are not clearly
distinguishable. Any selection of regions results either in over-
lapping or in exclusion. So only the diagonal regions of GLCM
are used for computing the entropy. It is observed that with
the increase in number of thresholds, the time taken to com-
pute the optimum thresholds is reducing. This is because, the

Fig. 2. GLCM quadrants for bi-level thresholding.

size of the GLCM is same for every level of the threshold,
but the area of calculating the DCE reduces as the number of
thresholds is increased.

It is known that, GLCM of an image is a square matrix,
which represents distribution of co-occurring intensity values
at a given offset. It is wise to reiterate that a single threshold
value T divides a GLCM into four quadrants, which is further
divided into two classes as shown in Fig. 2 [32].

Pixels having a gray level value greater than T correspond to
FG and that less than T correspond to BG. Thus, the diagonal
quadrants A and C of the matrix presents the local transitions
in the BG and object or FG, respectively. On the other hand,
quadrants B and D along the off-diagonal conform to joint
transitions through boundaries between the BG and the object
or FG [33]. Here, we focus only on the local transitions and
define the diagonal class entropy (DCE) as

HDCE(T) = HA(T) + HC(T) (1)

along the diagonal of the GLCM, where H denotes the entropy
feature. HA(T) denotes the local transition entropy of BG and
HC(T) denotes the local transition entropy of FG. Here, both
the entropies are determined by threshold T, hence they are
functions of T. These entropies are derived from GLCM and
are defined later in this section.

Here, a partitioned DSM influences the selection of regions
corresponding to the local transitions only. The GLCM is
partitioned into many regions depending on the number of
thresholding levels. Say, 3-level thresholding partitions the
GLCM into 9 regions, 4-level thresholding partitions it into
16 regions and so on. To the best of our knowledge, there
is no method available in the literature by which the GLCM
regions corresponding to the local transitions can be selected.
As observed in Fig. 2, for bi-level thresholding, the BG and FG
area is clearly distinguishable. However, when this idea is used
for multilevel thresholding, the BG and FG regions are not
clearly distinguishable. Any selection of regions results either
in overlapping or in exclusion. Hence, we suggest to choose
the diagonal regions of the GLCM conforming to the local
transitions, which is inspired by a partitioned DSM [34], [35].

A DSM is a square matrix, providing a compact representa-
tion of the relationships between the components of a system.
It is also referred to as dependency structure matrix or depen-
dency source matrix. The components are often labeled in the
rows and/or in columns. Each element of the matrix represents
the interaction of two components of the system. The off-
diagonal elements are used to indicate relationships between
the components. The elements along the diagonal are typ-
ically used to represent the relationship between the same
components.
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Fig. 3. DSM versus GLCM. (a) Partitioned DSM. (b) 4×4 GLCM for
three-level thresholding.

The objective of DSM is to explore various complex
system configurations with user-defined measures and require-
ments, to quantitatively determine, which components and/or
system should be modularized to improve the total system
performance. An important criterion for evaluating the matrix
is that the components are permuted and reordered so that
the matrix becomes lower triangular. The mutual depen-
dency between different components is explored and additional
cycles of dependency if any, are eliminated. Algorithms that
have been developed to optimize the ordering of components
and their combination into groups are called partition algo-
rithms. When the partition algorithm is applied to a DSM, it
is rearranged so that all dependencies fall either below the
diagonal or within groups along the diagonal. The DSM is
then said to be in block triangular form. Fig. 3(a) displays
a partitioned block triangular DSM. This idea of partitioned
DSM is used here. The cells of GLCM along the diagonal are
grouped to compute the entropy for multilevel thresholding.

A GLCM for three level thresholding is shown in Fig. 3(b),
where the cells along the diagonal are grouped into three
regions. It is interesting to note that, to the best of our
knowledge, DSM has not been used in image processing appli-
cations. This will certainly set a path for further research in
this area. It is observed from Fig. 3 that the structure and
characteristics of a GLCM are very much similar to DSM.
A GLCM is also a square matrix representing the frequency
of occurrence of different combinations of pixel intensities in
an image. The number of rows and columns of the matrix is
equal to the number of gray levels in the image.

Fortunately, the permutation and reordering of GLCM ele-
ments are not required here, as they are already distributed
properly. Each matrix element of the GLCM contains the
second-order statistics, probability values for changes between
gray levels i and j for a particular displacement and angle.
For a given distance, four angular GLCM are defined for
θ = 0◦, 45◦, 90◦, and 135◦. It is already stated in the lit-
erature that computation of GLCM for the values of θ =
180◦, 225◦, 270◦, and 315◦ adds nothing significant. Hence,
the final GLCM “G” is computed as

G =
[
g
(
d, 0◦

)
+ g

(
d, 45◦

)
+ g

(
d, 90◦

)
+ g

(
d, 135◦

)]/
4 (2)

where g(•) denotes GLCM in one direction only. Next, we
normalize the final GLCM as

G(i, j) = g(i, j)/
L∑

i=1

L∑

j=1

g(i, j) (3)

to prevent a negative value occurring for the entropy.

Fig. 4. GLCM regions based on partitioned DSM used for computing
DCE for multilevel thresholding. (a) Bi-level thresholding. (b) Three-level
thresholding. (c) Four-level thresholding. (d) Five-level thresholding.

A number of features are extracted from the GLCM [32].
In this paper, we use the entropy feature computed from the
GLCM. Let L be the number of gray levels in the image.
Then the size of GLCM will be L×L. Let G(i, j) represent
an element of the matrix. Then the entropy feature from the
matrix is computed as H = −∑L

i=1
∑L

j=1 G(i, j)×log(G(i, j)).
However, for bi-level thresholding, for a threshold value T,

the DCE is computed as

HA = −
T∑

i=1

T∑

j=1

G(i, j)× log(G(i, j)) (4)

HC = −
L∑

i=T+1

L∑

j=T+1

G(i, j)× log(G(i, j)) (5)

HDCE(T) = HA(T) + HC(T). (6)

When this formulation is extended to multilevel threshold-
ing, we consider only the diagonal regions of the GLCM for
computing the DCE for each level of thresholding as shown
in Fig. 4. The optimum thresholds are obtained when DCE
is minimized. We introduce here the theoretical formulation
for multilevel thresholding using DCE. For (K–1) thresholds
[T1, T2, . . . , TK−1] the DCE is computed as

HDCE(T1, T2, . . . , TK−1)

= −






T1∑

i=1

T1∑

j=1

G(i, j)× log(G(i, j))

+
T2∑

i=T1+1

T2∑

j=T1+1

G(i, j)× log(G(i, j))

...

+
L∑

i=TK−1+1

L∑

j=TK−1+1

G(i, j)× log(G(i, j))




. (7)

The proposed objective function is
{
Topt1, Topt2 , . . . , ToptK−1

}

= arg min
1<T1<T2<···<TK−1<L

{HDCE(T1, T2, . . . , TK−1)}. (8)

Note that K is the number of classes. It is observed from
Fig. 4(b) and (c) that the area, while computing the entropy,
is reduced as the number of thresholds is increased from two
to three. Interestingly, the area is further reduced with higher
levels of threshold [which is seen from Fig. 4 (d)]. This idea is
more clearly explained using the following figure.
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Pseudocode 1 Pseudo Code of the Proposed DCE Algorithm
Input: A gray scale image, Levels of thresholds (2,3,4,5)
Output: Thresholded image

Begin
1: Compute normalized GLCM using Eqn. (3)
2: Initialization of CRO vital parameters

Set broadcast probability (Fb) → 0.9
Set asexual reproduction probability (1-Fb) → 0.1
Occupancy parameter (p) → 0.6
Depredation probability (Pd ) → 0.1
Reef initialization (N, M, L)
Reef size ←N×M; No. of thresholds ←L

3: Evaluate initial fitness values using Eqn. (8)
4: for i=1 to number of iterations
5: larvae formation by broadcast spawning
6: larvae formation by brooding
7: larvae setting
8: budding or fragmentation
9: depredation

10: end
11: Optimal threshold values
End

Fig. 5. Flow chart of the proposed technique.

Let the level of threshold be denoted by T. Then for
8×8 GLCM, for T = 1, the number of GLCM elements used
for computing DCE is 50, for T = 2, the number of GLCM
elements used for computing DCE is 38, for T = 3, the num-
ber of GLCM elements used for computing DCE is 28, for
T = 4, the number of GLCM elements used for computing
DCE is 20 and similarly, for T = 5, the number of GLCM
elements used for computing DCE is 14. With an increase in
T, the number of GLCM elements for computing the entropy
is reduced, which results in lesser number of additions and
multiplications. As a result, our approach becomes very effi-
cient while computing the entropy, as we go on increasing the
threshold levels. This is another advantage of our proposed
method. The algorithm of the proposed scheme is presented
in Algorithm 1.

The flow chart of our proposed method is shown in Fig. 5.

Fig. 6. Example image to experiment. (a) Original image with identi-
fication number 48 025 from BSD500 dataset. (b) Three-level thresholded
image with DCE method using [125,158] threshold values. (c) Four-level
thresholding using [119,144,161] threshold values. (d) Five-level thresh-
olding using [108,145,170,215] threshold values. (e) Six-level thresholding
using [102,133,156,173,215] threshold values. (f)–(i) Results of human
segmentation.

We consider images from the Berkeley Segmentation
dataset [36] to experiment. The 2-D histogram-based Otsu’s
technique is realized for obtaining optimal thresholding values
utilizing (6). The thresholded image is obtained by applying
the following reconstruction rule. For K optimum thresholds
[T1, T2, . . . , TK], pixels having intensity values less than T1
preserve their values, pixels having gray levels between T1
and T2, are assigned T1, pixels having gray levels between T2
and T3, are assigned T2, similarly, pixels having gray levels
between TK and L, are assigned TK .

IV. RESULTS AND DISCUSSIONS

This section presents the results and discussions. The param-
eter setting for CRO is adopted using the guidelines provided
in [9]. It is mentioned in the pseudo code for the algorithm.
The findings are presented after 50 runs of each of the meth-
ods. We consider 30 number of iterations per independent run.
We use 300 images from the Berkeley Segmentation Dataset
(BSD300) [36] to experiment.

The dimension of longest side of each image is resized to
320 pixels and are converted to gray scale. The programs are
implemented in MATLAB on a Core i5 processor with 4GB
RAM. The results obtained using the proposed method are
shown in boldface. In Fig. 6(a), the original image is dis-
played. Images are colored using color map jet in MATLAB
for effective display of thresholded results.

The results are displayed for thresholding level m = 2, 3, 4,
and 5. Fig. 6(b)–(e) represents the results obtained using our
proposed method. It is observed that more details are visible
with an increase in the thresholding level.

From Fig. 6, it is seen that the thresholded images obtained
using our proposed method are close to the human segmenta-
tion results, when the number of thresholds is increased to five.
This is due to the fact that the directional edge information
is preserved in the proposed method. As observed from the
images in Fig. 6, with lower levels of thresholds the different
classes are overlapped. This may be due to the reconstruc-
tion rule presented under the algorithm section. The proposed
objective function seems to be more effective, because it
handles the local transitions in an efficient way.
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Fig. 7. Example image to experiment. (a) Original image with identi-
fication number 35 010 from BSD300 dataset. (b) Three-level thresholded
image with DCE method using [86,173] threshold values. (c) Four-level
thresholding using [62,99,173] threshold values. (d) Five-level threshold-
ing using [55,89,147,186] threshold values. (e) Six-level thresholding using
[53,69,100,165,191] threshold values. (f)–(i) Results of human segmentation.

Fig. 8. Example image to experiment. (a) Original image with identifi-
cation number 372 047 from BSD300 dataset. (b) Three-level thresholded
image with DCE method using [115,184] threshold values. (c) Four-level
thresholding using [86,143,191] threshold values. (d) Five-level threshold-
ing using [44,93,152,189] threshold values. (e) Six-level thresholding using
[39,87,129,174,200] threshold values. (f)–(i) Results of human segmentation.

Two more images 35 010 and 372 047 from BSD300 are
added for more realistic performance results for image thresh-
olding. Fig. 7(b)–(e) represents the results obtained using our
proposed method. Similarly, Fig. 8(b)–(e) represents the results
obtained using our proposed method.

Table I displays the average structured similarity
index (SSIM) [37] and Table II shows the average fea-
ture similarity index (FSIM) [38] calculated over 300 images
from BSD300 dataset. A higher value of SSIM and FSIM is
desired for a better thresholding performance. It is observed
from Tables I and II that the average SSIM and FSIM values
are higher for our proposed technique. The reason may be
the fact that the use of GLCM to compute DCE improves the
correlation among the pixels. These values also increase with
an increase in threshold levels. FSIM is also considered as an
image quality assessment measure. It understands an image
by its low level features like gradient magnitude and phase
congruence. Interestingly, the gradient magnitude is better
in this paper, because it is maximum along the diagonal of
a GLCM. Therefore, in Table II, FSIM values are higher in
our case.

Table III shows the comparison of average peak signal to
noise ratio (PSNR) [39] values for all the methods. PSNR is
useful for comparing images having different dynamic ranges.
A high value of PSNR is desired for improved threshold-
ing performance, which is evident for our proposed method.

TABLE I
AVERAGE SSIM VALUES FOR ALL THE ALGORITHMS (CALCULATED

OVER 300 IMAGES FROM BSD300 DATASET)

TABLE II
AVERAGE FSIM VALUES FOR ALL THE ALGORITHMS (CALCULATED

OVER 300 IMAGES FROM BSD300 DATASET)

TABLE III
AVERAGE PSNR VALUES FOR ALL THE ALGORITHMS (CALCULATED

OVER 300 IMAGES FROM BSD300 DATASET)

TABLE IV
AVERAGE CC VALUES FOR ALL THE ALGORITHMS (CALCULATED OVER

300 IMAGES FROM BSD300 DATASET)

Possible reason may be its ability to preserve more informa-
tion. Average cross correlation (CC) values are presented in
Table IV. With an increase in the number of thresholds, the
correlation value also increases. A high value of CC is desired,
which is observed in our proposed method. The use of GLCM
helps in increasing the CC values, which is inherent. It is seen
that the proposed method outperforms the other methods.

We also use the segmentation indices for comparing results
in Tables V–VIII. We have used the MATLAB code of the
indices along with benchmark images from [40] and [41].
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TABLE V
AVERAGE PRI VALUES FOR ALL THE ALGORITHMS (CALCULATED OVER

300 IMAGES FROM BSD300 DATASET)

Probability rand index (PRI) [42] calculates the fraction of
pairs of pixels whose labeling is consistent between the ground
truth and the computed segmentation result. It is a measure of
similarity between two images. Usually, its range is in [0,1].
The bigger is the value, the better is the thresholding result.
Variation of information (VoI) [43] computes the amount of
randomness in one segmented image by defining the distance
between two segmentations in terms of average conditional
entropy. Its range is in [0,∞). The smaller is the value, the
better is the result. Global consistency error (GCE) computes
the extent to which one segmentation can be observed as an
improvement of the other [42]. The range is in [0, 1]. The
smaller is the value, the better is the segmentation result.
Boundary displacement error (BDE) computes the average
error of displacement of boundary pixels between the seg-
mented images. It is defined as the distance between the pixel
and the nearest pixel in the other image boundary. A lower
value of BDE is preferred for better segmentation [43].

It is observed that our proposed method performs better
than the other methods. It is evident from Table V that the
average PRI values are higher in our case. It is also noticed
that the average PRI values increase with an increase in the
number of threshold levels, which implies a good thresh-
olding performance. A similar trend is observed in case of
BDE values. The values get smaller with an increase in the
threshold levels as shown in Table VI, which is expected.
The average GCE and the average VoI values are smaller
in our case, at a particular threshold level, as observed from
Tables VII and VIII, respectively, which is desirable for bet-
ter segmentation. The values of these two indices should
get smaller, when the number of threshold levels increases.
However, values of VoI and GCE are increasing. A probable
reason for such a trend may be, the objective of multilevel
thresholding technique is different from the traditional seg-
mentation techniques. The segmentation techniques mainly
focus on partitioning an image into multiple similar regions,
whereas, multilevel thresholding is focussed on identifying
multiple objects and boundaries.

The proposed method is compared with three more image
segmentation methods [44]–[46], which includes other types of
multilevel thresholding methods especially developed in recent
years as well as a nonthresholding method with similar type of
segmentation results. We have also compared our results with
our implementations of 2-D Otsu and Kapur’s entropy-based
criteria. The results presented in Tables I–VIII illustrate that
the performance of the proposed method is better as compared
to other methods.

TABLE VI
AVERAGE BDE VALUES FOR ALL THE ALGORITHMS (CALCULATED

OVER 300 IMAGES FROM BSD300 DATASET)

TABLE VII
AVERAGE GCE VALUES FOR ALL THE ALGORITHMS (CALCULATED

OVER 300 IMAGES FROM BSD300 DATASET)

TABLE VIII
AVERAGE VOI VALUES FOR ALL THE ALGORITHMS (CALCULATED OVER

300 IMAGES FROM BSD300 DATASET)

Fig. 9. CPU time comparison.

Fig. 9 shows the time required for computing the thresh-
old values. It is seen that, in the Otsu’s 2-D technique, the
computation time increases with an increase in the number
of thresholds, which is a general trend. From the graph, we
observe that the Otsu 2-D technique is faster than our method
for threshold level m = 2, 3, 4, 5. However, the proposed
method supersedes the Otsu 2-D technique in terms of compu-
tation time for six and upper thresholding levels, an interesting
trend is observed. The computation time decreases, as the
number of threshold levels increase. The reason being the fact
that the area of computing entropy decreases with an increase
in levels of threshold (as explained in Section III). The compu-
tational complexity for multilevel thresholding using 2-D-Otsu
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TABLE IX
COMPARISON BETWEEN DCE AND OTHER TECHNIQUES USING t-TESTS

is O (Lk−1) where L is the number of gray levels and k is the
number of classes. However, it is O (Lk−1/k) for the proposed
method. This is the reason why the computation time decreases
when k increases. This may bring a new direction in research
in multilevel thresholding.

In order to validate the proposed algorithm, statistical test
(t-test) is carried out. Table IX presents the t values and the
P values on the four indices of this two-tailed test with a sig-
nificance level of 0.05 between the DCE and other techniques.
The results indicate that the proposed method is significantly
different from the other methods.

V. CONCLUSION

The traditional Otsu’s method is based on 1-D histogram.
Subsequently, it was also extended using the 2-D histogram
for bi-level thresholding. In this paper, we have implemented
the Otsu’s method based on 2-D histogram. We have also
experimented with our implementations of Kapur’s entropy
for multilevel thresholding. Further, we have proposed a new
method called DCE, which uses the second-order statistics
for computing the local entropy. The selection of diagonal
regions for computing the entropy is inspired by the par-
titioned DSM. For bi-level thresholding, the local entropy
feature is computed for BG and FG regions. However, for
multilevel thresholding, it is difficult to identify the BG and
FG regions. Hence, we use the diagonal regions of the GLCM
and proposed the DCE for obtaining the thresholds. A new
objective function is proposed with an automatic constraint
repair mechanism for preventing the parameters from crossing
the bounds. The objective function is minimized using CRO.

It is observed that the time required for obtaining optimum
threshold decreases with an increase in the threshold levels.
The reason being the fact that the number of elements of
the GLCM considered for computing the DCE decreases. The
performance parameters computed for comparison support our
claim for a new multilevel thresholding technique. It has been
shown that our method outperforms Otsu’s method based on
2-D histogram and four other types of multilevel threshold-
ing methods especially developed in recent years, as well as
a nonthresholding method with similar type of segmentation
results. As we increase the dimension to K = 10 or 20, the
output image may result in over segmentation. The output may
contain overlapped objects or overlapped boundaries. Further,
we may not get proper solutions because the number of unique
levels in the image may be less to find 10 or 20 thresholds.
This is the limitation of the proposed method. This may set

the path for new investigations in the domain of multilevel
thresholding.
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