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Abstract This paper proposes a modified line search meth-
od which makes use of partial derivatives and re-starts the
search process after a given number of iterations by mod-
ifying the boundaries based on the best solution obtained
at the previous iteration (or set of iterations). Using sev-
eral high dimensional benchmark functions, we illustrate
that the proposed Line Search Re-Start (LSRS) approach is
very suitable for high dimensional global optimization prob-
lems. Performance of the proposed algorithm is compared
with two popular global optimization approaches, namely,
genetic algorithm and particle swarm optimization method.
Empirical results for up to 10,000 dimensions clearly illus-
trate that the proposed approach performs very well for the
tested high dimensional functions.
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1 Introduction

The objective of global optimization is to find the globally
best solution of (possibly nonlinear) models, in the (pos-
sible or known) presence of multiple local optima. For-
mally, global optimization seeks global solution(s) of a con-
strained optimization model. For an unconstrained mini-
mization problem, global optimization may be formulated
as follows:

Given a function f : Q C N" — N, find the lowest value
of the function. We refer the global minimum where there
can be also several local minima.

Definition 1 (global minima) x* € € is called global mini-
mum of fif: f(x*) < f(y),Vy e Q.

Definition 2 (local minima) x* € Q is called local minimum
of f if AV (x*) so that f(x*) < f(y),Vy € V(x*), where
V (x*) is a neighbourhood of x*.

The term “global” contrasts with a local minima of f, which
is the lowest value of f(x) in some open neighborhood in 2.
Thus a function may have multiple local minima but it can
usually have only one global minimum value [6].

In this paper, we assume the following:

— the optimization problem is unconstrained;
— f is nonlinear, continuous and differentiable;
— the feasible region €2 is given by a set of lower and upper
bounds on each variable, i.e.
Q ={min; < x; <max;, i =1,...,n} and that the
global minima lies within the interior of 2.

As mentioned by Gergel [13] and as evident from other
well established works [5, 7, 10-12, 21, 22, 38, 39, 41, 44],
these class of problems are of substantial interest. Even
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though there is a huge amount of work dealing with global
optimization, there are still not many powerful techniques
to be used for dense high dimensional functions. One of the
main reasons is the high computational cost involved. Usu-
ally, the approaches are computationally expensive to solve
the global optimization problem reliably. Very often, it re-
quires many function evaluations and iterations and arith-
metic operations within the optimization code itself. For
practical optimization applications, the evaluation of f (x) is
often very expensive to compute and large number of func-
tion evaluations might not be very feasible [6].

Due to the practical demands, there were some attempts
in trying to use different methods to solve high dimensional
global optimization problems. One solution is to use paral-
lel global optimization methods [37]. The parallel algorithm
for global optimization proposed by Hofinger et al. [19] can
approach functions having up to 512 dimensions (according
to [19] it took 3 days for the first 10 iterations). The paral-
lel particle swarm algorithm proposed by Schutte et al. [42]
works well for some standard functions (example: Griewank
and Corona test functions) and was tested for 128 dimen-
sions.

Among the existing meta-heuristics for global optimiza-
tion, we used two popular approaches for comparisons with
the LSRS approach. The selected meta-heuristics, namely,
Genetic Algorithms (GA) and Particle Swarm Optimization
(PSO) are well established and found highly successful and
suitable for several classes of optimization problems. As ev-
ident from the scientific literature, GA and PSO were im-
proved and adapted in several ways so as to obtain some
reasonable results. In spite of all the success stories for sev-
eral applications and revisions proposed during the last sev-
eral years, these techniques are still not very much suitable
for large scale global optimization problems involving high
dimensions.

There are impressive number of papers reporting results
in applying these techniques—either in their original form
or in several improved and hybrid versions. Parsopoulos and
Vrahitis [40] proposed a modified and improved PSO ap-
proach, which is proven to be efficient for different types of
problems: global optimization, optimization in dynamic en-
vironments as well as multi objective optimization. Authors
considered only very few dimensions (maximum 9 dimen-
sions).

Liang et al. [33] provided an exhaustive comparison be-
tween several PSO variants and a comprehensive learning
PSO. Authors tested only 30 dimensions, but PSO was im-
proved in several ways to obtain some good results for the
functions they considered.

Liu et al. [34] introduced turbulence in the Particle
Swarm Optimization (TPSO) algorithm to overcome the
problem of stagnation. The algorithm used a minimum ve-
locity threshold to control the velocity of particles. TPSO
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mechanism is similar to a turbulence pump, which supplies
some power to the swarm system to explore new neighbour-
hoods for better solutions. The parameters and the minimum
velocity threshold of the particles were tuned adaptively by
a fuzzy logic controller embedded in the TPSO algorithm,
which is further called as Fuzzy Adaptive TPSO (FATPSO).
Authors approach gave satisfactory results for multi-modal
functions up to 100 dimensions.

A hybrid GA, scatter search and tabu search was pro-
posed by Trafalis and Kasap [45] but only for test functions
having a maximum of 5 dimensions. It is obviously diffi-
cult to apply this technique for more dimensions due to its
complexity.

The evolutionary techniques proposed by Emmerich et al.
[9] used Gaussian random field meta-models to deal with
computationally expensive function evaluation optimization
problems. The test functions used in there experiments con-
sisted of only 20 dimensions.

The genetic algorithm proposed Koumousis and Katsaras
[31] used a variable population size and periodic partial re-
initialization of the population in the form of a saw-tooth
function. Even though the aim of these approaches is to
enhance the general performance of the algorithm, the test
functions consisted of only a maximum of 20 dimensions.
Authors compared the performance with standard GA and
micro-GA [32].

The GA using adaptive representation proposed by
Grosan and Oltean [15] is achieved by using several pos-
sible encodings (not only real or binary as usual, but also
using different alphabets). These encodings can switch be-
tween them when no improvements are possible for one of
the representations. Authors considered only a maximum of
30 dimensions.

There are also some recent researches reported in this are
as follows.

Hirsch et al. [18] used a continuous greedy random-
ized adaptive search procedure (C-GRASP) for continuous
global optimization. Even though the algorithm does not use
any additional information about the function (such as dif-
ferentiable, etc.) and can be adapted for use on parallel ma-
chines, it is only applied for a maximum of 10 dimensions.

Ismael et al. [24] combined particle swarm optimization
with a direct search method and applied for functions having
up to 294 dimensions, but results obtained for high dimen-
sions (for minimization problems) are in the range of 10’
(instead of 0).

Maaranen et al. [35] tested the performance of GA by
considering several ways to initialize the population (which
can affect the quality of the final solution) for functions in-
volving 50 dimensions.

A tabu search combined with gradient method (steepest
descend and quasi Newton) was formulated by Stepanenco
and Engels [43] and applied for functions having up to 50
dimensions.
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Addis and Leyffer [1] used a trust-region method for
functions involving 50 dimensions. Some of the benchmark
test functions are also used in this paper for comparisons.

The paper is structured as follows: in Sect. 2 the modi-
fied Line Search- Re-Start technique is presented. In Sect. 3
the two computational techniques used for comparisons,
namely, GA and PSO—are briefly introduced. Section 4 is
dedicated to the numerical experiments. First we illustrate
how the proposed approach could be used for unidimen-
sional functions. We then illustrate the performance in terms
of fast convergence for the two dimensional functions. Fi-
nally, experiments are reported for higher number of dimen-
sions (between 50 and 10,000). Section 5 includes conclu-
sions and further work ideas.

2 Modified line search technique

Line search is a well established optimization technique.
The modification proposed in this paper for the standard line
search technique refers to step setting and also the incorpo-
ration of a re-start approach. To fine tune the performance,
the first partial derivative of the function to optimize is also
made use of. The proposed three modifications are summa-
rized below and will be described in details in the subse-
quent sections:

1. The first modification refers to the inclusion of multi start
principle within the search process.

2. The second modification is related to the setting of the
direction and step.

3. The third modification refers to the re-starting of the line
search method.

After a given number of iterations, the process is restarted
by reconsidering other arbitrary stating point (or other mul-
tiple arbitrary starting points) which are generated by taking
into account the results obtained at the end of previous set
of iterations.

Shortly, the main body of the method used can be ex-
pressed as follows:

For i=1 to No of re-start applications
For t=1 No of iterations
Line_search()

endfor
Re-initialization() ;
Re-start () ;

Endfor

In the following subsection, the algorithm is presented in
a structured form.

2.1 Generation of the starting points

It is known that line search techniques uses a starting point.
There are also versions which allow the usage of multiple

points and the search will start separately from each of these
points.

In the proposed approach, multiple arbitrary starting
points are used. Each point is randomly generated over the
definition domain.

For a function of n variables and the domain of definition
given by:

[min;, max] x [miny, maxz] X - - - [min,,, max,|

where [min;, max;] is the domain of ith variable, the proce-
dure for generating the starting points x between the consid-
ered limits is given by:

Generate starting points()

for i=1 to No of arbitrary starting
points
for j=1 to No of variables
Xij =minj + random* (max;-minx;) ;
endfor
endfor

The random function generates an arbitrary number be-
tween [0, 1].

2.2 Direction and step settings

Initially, we performed several experiments in order to set
an adequate value for the direction. We used the standard
value +1 or —1 and, for some functions the value —1 was
favourable for very good results. We also performed some
experiments by setting the direction value as being a ran-
dom number between 0 and 1. Using the random number
helped to obtain overall very good performance for the en-
tire considered test functions. But usage of the value —1 for
direction, obtains almost the same performance similar to
that obtained with a random value. So, either of these values
(the random one and the value —1) may be used for better
performance.

The step is set as follows:

3

ap =2+ W >
where k refers to the iteration number.

The Line_search() technique may be written as follows:

Line_ search()

Set k=1
Repeat

for i=1 to No of starting points
for 7=1 to No of variables

(Number of iterations)

prx=—1; //or p=random;
3
ak:2+ﬁ
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k+1 _ _k
Xij = Aij + Dk - ok
endfor
if f(xl“'l) > f(x{‘) then x{”‘l =)cllc .

Endfor

k=k+1
Until k=Number of iterations (apriori
known) .
Remarks

(i) The condition:

if f(xf‘“) > f(xf) then xf“ =xl{‘
allows us to move to the new generated point only if
there is an improvement in the quality of the function.

(ii)) Number of iterations for which line search is applied
is apriori known and is usually a small number. In our
experiments, we set the number of these iterations to
10 even for high dimensional problems (for example:
2,000 or 10,000).

(iii) When restarting the line search method (after the in-
sertion of the re-start technique) the value of iterations
number will again start from 1 (this should not be re-
lated to the value of « after the first set of iterations
(and after each of the following ones)).

We have tried using several experiments to set a value
for the step, starting with random values (until we will reach
a point for which the objective function is getting a better
value); using a starting value for the step and generating ran-
dom numbers with Gaussian distribution around this num-
ber, etc. As a result of the initial experiments performed, we
decided that the formula for the step provided above was
performing well. But, of course, there are also several other
ways to set this.

2.3 Re-start insertion

In order to restart the algorithm the best result obtained in
the previous set of iterations is taken into account and by
following the steps given below:

1. Among all the considered points, the solution for which
the objective function is obtaining the best value is se-
lected. If there are several such solutions, one of them
is randomly selected. This solution will be a multi-
dimension point in the search space and denoted by x
for an easier reference.

2. For each dimension i of the point x, the first partial deriv-
ative with respect to this dimension is calculated. This
means the gradient of the objective function is calcu-
lated which is denoted by g. Taking this into account,
the bounds of the definition domain for each dimension
is re-calculated as follows:
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)
ifg; = of > 0 then max; = x;;
Bxl-

if gi = % < 0 then min; = x;
3)61'

The search process is re-started by re-initializing a new

set of arbitrary points (using Generate starting

points () procedure) but between the newly obtained

boundaries (between the new max; or new min;).

The pseudo code of the Re-start technique is given below
(g denotes the gradient of f):

Re_start()

Calculate the solution (out of the
entire set of points) for which the
value of the function is minimum.

Let x* be minimum obtained at the
current moment of the search process

For i=1 to No of dimensions

if gi(x#)>0 then max; =xl-#
if gi(x#)<0 then minj; =ux;
endfor

2.4 General Line Search with Re-Start (LSRS) procedure

The flowchart of LSRS is depicted in Fig. 1. The Line
Search method presented in the previous subsections com-
bined with the re-start technique as described above is ex-
pressed using the following pseudo code:

General Line Search with Re-Start (LSRS)

Set t=1;
Repeat
Generate starting points
Line_search (k);
Re_start (new values for max; and/or
min; for each dimension will be
obtained) ;
t=t+1;
Until t=Number of applications of the
re-start technique (a priori known) .
Select the solution x* for which the
value of the objective function is
minimum.
Print x*.

(max, min);

3 Genetic Algorithms and Particle Swarm
Optimization Algorithms

Due to the fact that these two techniques are now well
established and very popular among the artificial intelli-
gence/problem solving community, some of the fundamen-
tal ideas are presented in this section with a focus on the
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Generate arbitrary
starting points

N
LV’

Apply line search
for N iterations

Redefine the boundaries
based on the optimum
previously obtained

\Y4

!
N

Fig. 1 The general scheme of the LSRS

algorithms structure which would help the reader to follow
the experiments.

3.1 Genetic Algorithms

Genetic Algorithms are a population based search technique
using principles from biological evolution which are trans-
posed in a computational scheme. Proposed in 1975 by
J. Holland [20], were developed further and successfully ap-
plied in various domains. The basic components are solu-
tion representation, population initialization, fitness function
and genetic operators (such as selection, crossover and mu-
tation). The main idea is as follows: the genetic pool of a
given population potentially contains an approximate solu-
tion, to a given problem. During reproduction and crossover,
new genetic combination occurs and there is chance to ob-
tain a better solution (either than the ones which were com-
bined or mutated or better than all the existing ones in that
pool). By repeating several times these recombinations be-
tween the potential solutions for the problem, usually a very
good approximation of the solution is obtained [2, 3, 14].

Genetic Algorithm Scheme

Set t=1;
Randomly initialize population P(t);
Repeat
Evaluate individuals from P(t);
Selection on P(t). Let P’ (t) be
the selected individuals;
Crossover on P’ (t). Survival
between parents and offspring.
Mutation on P’ (t).
between parent and offspring.
t=t+1;
P(t)=P’'(t-1);
Until t=Number of generations.

Survival

Remarks:

(1) The selection procedure used is binary tournament.
(i1) Crossover and mutation are performed with a given
probability.

(iii) Survival between parents and offspring after crossover
will return as results the best two individuals among the
four (two parents and two offspring) considered.

(iv) Survival between parents and offspring after mutation
is made by direct comparison (in terms of fitness func-
tion). The best one between parent and offspring will
be accepted.

3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is also a population
based method, which can be successfully applied for op-
timization. The concept of Particle Swarms, although ini-
tially introduced for simulating human social behavior, has
become very popular these days as an efficient search and
optimization technique. PSO, as it is called now, does not
require any gradient information of the function to be op-
timized, uses only primitive mathematical operators and is
conceptually very simple.

In PSO, a population of conceptual ‘particles’ is initial-
ized with random positions x; and velocities v;, and a func-
tion, f, is evaluated, using the particle’s positional coor-
dinates as input values. In an n-dimensional search space,
x = (x1,x2,X3,...,%x,) and v = (v, v2, V3, ..., V,). Posi-
tions and velocities are adjusted, and the function is eval-
uated with the new coordinates at each time-step. The best
position of the particle found during the search process—
pbest—as well as the position of the best particle from the
entire swarm—gbest (global best)—is stored. The basic up-
date equations for the kth dimension of a current particle
p_current in PSO at iteration t may be given as:

v+ 1) =w- v (t) +c1 - rand; - (pbest;, — p_currenty(t))
+ ¢ - randy - (gbest;, — p_curenty(t)))

p_currenti(t + 1) = p_currenty(t) + vi (t + 1) (1)

The variables rand| and rand, are random positive num-
bers, drawn from a uniform distribution and defined by an
upper limit rand_max, which is a parameter of the system.
c1 and ¢, are called acceleration constants whereas w is
called inertia weight. pbest, is the local best solution found
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so far by the particle, gbest, while represents the positional
coordinates of the fittest particle found so far in the entire
community (for dimension k). Once the iterations are ter-
minated, most of the particles are expected to converge to
a small radius surrounding the global optima of the search
space [8, 23, 25-30]. The core of the PSO algorithm used in
our experiments is presented below:

Particle Swarm Optimization

Initialize the population of particles.
For each particle set its pbest.
Set the gbest.
Set t=1;
Repeat
For each particle

update its current position
using equations (1) ;

If the value of the function
to optimize for the new
obtained particle is better
than the initial one

Then keep the new obtained

particle
Else keep the initial
particle
Update pbest
Endfor
Update gbest;
t=t+1;

Until t=Number of iterations.

4 Numerical examples

In order to demonstrate the performance of the proposed
LSRS method we present the results obtained for a set of
benchmark problems which are described in Sect. 4.2. We

consider a high number of dimensions varying between 50
and 10,000.

4.1 Performance assessment

According to Baritompa [4], there are two criteria which
must be taken into account: effectiveness and efficiency. The
first one reflects whether we reached what we wished (so-
lution with a given approximation or so) and the second
one refers to the (computational) cost required to do this.
One measure of effectiveness can be given by the number of
times the global optimum has been reached by a certain al-
gorithm. For this purpose, usually several repetitions of the
algorithm application are required. For measuring the effi-
ciency, usually the number of function evaluations used is
considered. The convergence speed, which is a measure of
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whether the solution in the next iteration is improved and
how can be also considered as an efficiency criterion.

In order to asses the performances of the new proposed
technique, performance graphs are used and the empirical
results are also compared with genetic algorithms and parti-
cle swarm optimization algorithms.

All the algorithms including LSRS, GA and PSO have
been implemented using C++ Builder 6.0 and were run on a
2.4 GHz Intel Duo Core CPU, with 2 GB RAM.

4.2 Test functions

The proposed algorithm is tested using a set of standard con-
tinuous test functions [10, 16] which are widely used in the
literature and whose characteristics are diverse enough to
cover many of the problems which can arise in global opti-
mization problems as mentioned in [17].

Ackley function

F) =20+ —20. ¢ 02V DK _ o T cosmx)
Domain of definition: [—10, 10]"

Optimum point: x* = (0,0,...0), f(x*)=0.

Levy function

n—1

f) =sin?(ry) + Y (yi — D21+ 10sin? (7 - y; + 1))

i=1

+ (O — DX +sin° (2 7 - x,))

X; — 1 .
yvi=1l4+—— fori=1,2,...,n

4

Domain of definition: [—10, 10]"
Optimum point: x* = (1, 1,...1), f(x*)=0.
Quadric function

n

£ =Z(§xj>2

i=1
Domain of definition: [—10, 10]"
Optimum point: x* = (1, 1,...1), f(x*)=0.

Rastrigin function

Domain of definition: [—5.12, 5.12]"
Optimum point: x* = (0,0, ...0), f(x*) =0.

Rosenbrock function

n—1

f& = Z[lOO(xiz —xiyD)? + (6 — D2

i=1
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Domain of definition: [—5, 10]" Sum Squares function
Optimum point: x* = (1, 1,...1), f(x*)=0. .
Schwefel function fx) = Zi 'xiz
i=1
n n
. S .

flx) = Z xi| + H x| Dorpaln of d(.%ﬁnltlfn. [—10, 10] .

im1 e Optimum point: x* = (0,0, ...0), f(x*)=0.
Domain of definition: [—10, 10]" 4.3 Example of the LSRS convergence for the
Optimum point: x* = (0,0, ...0), f(x*)=0. one-dimensional Sphere function
Sphere function

We consider a simple example for the Sphere function of
n one dimension to illustrate the convergence of LSRS for 4
fx) = Z xl_Z arbitrary starting points. The boundaries are modified after
just one step (one iteration of the line search application).
Figure 2 depicts the LSRS convergence in three phases of
Domain of definition: [—10, 10]" one iteration each. Initial points plotted in Fig. 2 are ran-
Optimum point: x* = (0,0, ...0), f(x*)=0. domly generated between [—5.12,5.12]. These points and

i=1

o g

3 /
7 27 /
b /
] ¢
h jI
19 19
| 5 /
() Re-generate arbitrary ] ,fj
11 starting points in 113
between the new ] /

boundaries
3 O Apply line search 3]

—
v v
-5 T T T A1 L} T T T A
-6 -3 0 3 6, -B -3 0 3 B,

b 4 New boundaries

/

©

17
| 0,74
Re-generate arbitrary 0 4_- ~ /,
starting points in S N A
between the new | S e
boundaries a1 T '
0 Apply line search i £ ——— x=0.01203
-0,2- g
1 £
£ ——— f(x)=0.00014
T e S e S T A S e B
-0,7 -0.4 -01 02 048

Fig. 2 Convergence of LSRS for the one-dimension Sphere function
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The four points after the Phase 2

Point 1 Point 2 Point 3 Point 4
-1.589916 -4.751609 -5.218501 3.005734
f 2.527835 2257779 27.23275 9.034441

Fig. 3 The points and the corresponding function values obtained after Phase 1

Boundaries after Phase 1

Boundaries after Phase 2

Initial lower bound

Initial upper bound

Initial lower bound

Initial upper bound

Fig. 5 The points and the

obtained after Phase 2

Fig. 6 The points and the

obtained after Phase 3

-5.12 -5.12 -5.12 -0.300573
Lower bound after the Phase 1|Upper bound after the Phase 1||Lower bound after the Phase 2|{Upper bound after the Phase 2
-5.12 0.300573 0.124962 0.300573
(a) (b)
Boundaries after Phase 3
Initial lower bound Initial upper bound
0.124962 -0.300573
Lower bound after the Phase 3|Upper bound after the Phase 3
0.124962 0.012035
()
Fig. 4 The modification of boundaries after each Phase for the one-dimensional Sphere function
corresponding function values The four points after the Phase 2
Point 1 Point 2 Point 3 Point 4
-0.233898 -3.842776 -0.124962 -1.239832
f 0.054708 14.766934 0.015615 1.537184
corresponding function values The four points after the Phase 3
Point 1 Point 2 Point 3 Point 4
0.174625 0.012035 0.096014 -0.109076
f 0.0304941 0.0001448 0.009218 0.011897

the corresponding function values are given in Fig. 3. We ap-
plied line search for one iteration with direction —1 and step
2 4 3/4. The new obtained boundaries after this first Phase
are given in Fig. 4(a). Four other points are now re-generated
in between the new obtained upper and lower bounds. After
applying line search for one iteration, the points obtained
and the corresponding function values are given in Fig. 5.
The points obtained in the Phase 3 (in the same manner
like in Phase 2) are presented in Fig. 6. The optimum point
(and its corresponding function value) and its convergence
at each Phase is depicted in Fig. 7.
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4.4 The two-dimensional case: results and discussions

The PSO technique is well known as a fast convergent op-
timization algorithm. This is indeed the case for functions
having a low number of dimensions [34]. Just few particles
and iterations are good enough to provide an acceptable re-
sult for 2 objectives. This is evident from the results pre-
sented in Table 2 (for all the test functions but having only 2
dimensions) that PSO is obtaining sometimes better results
than LSRS under the same conditions. But for higher dimen-
sions PSO is getting stuck only after little iterations (same
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Fig. 7 The optimum point and
the corresponding function
value obtained at the end of each
phase for the one-dimensional
Sphere function

Phase 1

optimum=0.300573
f(optimum)=0.090344

=)

—)

Phase 2 Phase 3

J

optimum=-0.124962
floptimum)=0.0156155

optimum=0.012035
f(optimum)=0.0001448

—)

Table 1 Comparison of PSO and LSRS for two dimensional case in terms of fast convergence and best results

Test Swarm size Number Actual Minimum Minimum obtained by
function (number of of optimum obtained LSRS
initial iterations by PSO With no With 2 With N
points for LSRS) (N) re-start re-starts re-starts
Ackley 5 2 0 1.71828 3.576 1.7816 1.7816
Levy 7 0 0.0629 5.2501 0.035 0.00002
Quadric 2 4 0 0.0064 119.45 4.068 0.0034
Rastrigin 100 2 0 5.449 20.17 16.45 16.45
Rosenbrock 2 4 0 0.8504 2559.96 17.62 1.069
Schwefel 10 2 0 2.0 2.7305 0.4823 0.4823
Sphere 10 2 0 0.7888 0.0185 0.0042 0.0042
Sum squares 3 5 0 0.0004 0.31 0.05 0.0001

conclusions can be also found in [34]) and the results ob-
tained are much worse while compared to LSRS empirical
performance.

Table 1 displays the best results which can be obtained
with minimal resources (less number of iterations and less
individual or particles in the population or starting points).
Since PSO is the fastest technique (as the results presented
also show this) we are comparing PSO and LSRS and we are
providing details about the GA results obtained in the same
or similar conditions in the discussions which follows due
to the fact that GA convergence is a little bit slower.

4.4.1 Remarks related to results for the two-dimensional
case

The results presented in Table 1 are obtained by considering
the best minimum obtained in 100 independent runs.

e We considered these parameters values based on the re-
sults obtained for PSO. For example, for the Rosenbrock
test function, the value 0.8504 is obtained in the forth iter-
ation with only 2 particles. But the same value is obtained
even after 100 iterations with a swarm of size 10. Using
a higher number of particles 10, the value 0.7773 is ob-
tained after 50 iterations. We therefore considered the ini-
tial parameters (2 particles and 4 iterations) as reference
for comparison purposes.

e Three variants of LSRS are presented in Table 1:

— LSRS with no re-start is in fact, the standard line search
technique applied for N iterations;

— LSRS with 2 re-starts is line search applied two times
for N /2 iterations each (or N/2 and N/2+ 1 in case of
odd N) but second time it is applied after the domain
of definition reduction using the gradient.

— LSRS with N re-starts refers to N applications of the
line search for one iteration each after which the do-
main of definition is reduced (the boundary conditions
are updated) using the gradient.

e For the Ackley test function, PSO performance was not
improving after the second iteration even with a swarm
size of 100. LSRS is getting a close result to PSO after
only 2 iterations and the result obtained are 0.0621 for 2
initial starting points, 4 iterations and 4 re-starts (at one
iteration each) and 0.5900 for 2 initial starting points, 4
iterations and 2 re-starts (at 2 iterations each). Result ob-
tained by GA after 5 generations with a population of size
2 is 8.525. After 10 generations, with a population of size
10, the minimum obtained is 2.47.

e The minimum obtained by GA for Levy function after 7
generations with a population of 2 individuals is 1.461
which is worse than both PSO and LSRS.

e For the Quadric test function, PSO converged very fast,
but results obtained by LSRS are also good in the last
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case. GA obtained the value of 0.072 relatively fast
(with 5 individuals and after 5 generations) but is getting
trapped there and the performance could not be improved
even after 1000 iterations and considering a population of
size of 100.

e For the Rastrigin test function, it is obvious that only two
iterations were not enough for LSRS to converge. Results
obtained for 2 re-starts and for N re-starts are same be-
cause N is 2 in this case. PSO got trapped after two it-
erations and the performance could be improved only by
increasing the swarm size. By increasing N to 10, LSRS
obtained a value of 2.17E—8 (using 100 initial starting
points). If only 10 starting points are considered, 10 iter-
ations and 10 re-starts, result obtained is 0.00035 while
result obtained for 10 starting points, 10 iterations and
only 2 re-starts is 1.79. This is the only case where GA
is obtaining the best result with the parameters given in
Table 2. With a population of 50 individuals the result
obtained is 2.096 while for 100 individuals the results ob-
tained is 0.21 after only 2 generations.

e With a population of 2 individuals and using 4 generations
GA is obtained the worst results for Rosenbrock test func-
tion among all the algorithms (obtained value: 8.343).

In the case of Schwefel test function, PSO performance
could not be improved even with higher number of iterations
(100) and higher swarm size (100). LSRS obtained the result
of 0.011, if the number of re-starts is increased from 2 to 4
(one iteration for each re-start and 2 initial starting points).
GA obtained 1.8786 which is better than PSO with 10 in-
dividuals and after 2 generations the performance could be

improved to 0.855, if the number of generations is increased
to 10.

The result obtained by GA for the Sphere test function
is 1.659 (using 10 individuals and after 2 generations). For
a population of 50 individuals the minimum obtained by
GA is 0.824. If we increase the swarm size to 50, the op-
timum obtained by PSO is 0.0288 while for 100 particles
in the swarm the optimum obtained is 0.0128 (after 2 itera-
tions). While testing LSRS for 4 iterations and 4 re-starts (of
one iteration each) using 2 starting points we get the result
3.31E-5.

For the Sum squares test function, result obtained by GA
is 3.518 but this could be improved to 0.068, if the number
of generations is increased from 5 to 10.

4.5 The high-dimensional experiments

From the previous illustrations, it is evident that PSO and
GA are good candidates for a low number of dimensions.
All the algorithms were also tested for higher number of di-
mensions. We considered 50, 100, 250, 500, 750 and 1,000
dimensions for all the test functions. Also, we test the perfor-
mance of LSRS for 2,000 and 10,000 dimensions but com-
parisons with PSO and GA are not reported due to the poor
results which is evident from the results obtained for 1,000
dimensions.

4.5.1 Parameter settings

Table 2 presents the values of the main parameters used by
the three techniques involved in experiments.

Table 2 Parameters used by LSRS, PSO and GA for 50, 100, 250, 500, 750, 1,000 and 2,000 dimensions

Parameter Parameter values
No of dimensions
50 100 250 500 750 1000 2000
LSRS
No of starting arbitrary points 500 500 500 500 500 500 500
No of restarting 50 50 100 100 100 100 100
(reinitialization)
No of iterations per each 10 10 10 10 10 10 10
restarting phase
Genetic Algorithm
Population size 500 500 500 500 500 500
Number of generations 20,000 20,000 20,000 20,000 20,000 20,000
Mutation probability 0.9 0.9 0.9 0.9 0.9 0.9
Crossover probability 0.5 0.5 0.5 0.5 0.5 0.5
Particle Swarm Optimization
Number of particles 500 500 500 500 500 500
Number of iterations 20,000 20,000 20,000 20,000 20,000 20,000
cl, c2 2 2 2 2 2 2
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Table 3 Empirical performance for 50 dimensions

Approach Function

Ackley Levy Quadric Rastrigin ~ Rosenbrock Schwefel Sphere Sum Squares
GA Best

2.882 0.327 6.105E+3 104.86 55.34 10.99 6.544 425.57

Average

3.38 0.327 6.113E+3 122.4 55.34 13.46 15.384 431.05

Standard Deviation

0.477 0 545.08 14.99 0 1.896 8.111 39.454
PSO Best

5.045 11.93 3.02E+4 198.86 1.58E+4 29.491 59.91 1002.2

Average

6.055 18.88 7.81E+4 247.45 5.9E+4 46.80 100.16 2116.6

Standard Deviation

1.017 8.38 3.43E+4 52.01 5.23E+4 10.163 36.73 786.29
LSRS Best

—6.5E—19 29E-39  6.27E-19 0.0 247E-28 1.86E—11 1.34E-22  9.86E—21

Average

—6.5E—19 29E-39  233E-18 0.0 1.38E—18 1.91E—-11 1.38E—18 1.42E—18

Standard Deviation

0 0 8.11E—-19 0 1.29E—18 4.15E—12 1.29E—18 1.25E—18
Actual optimum 0 0 0 0 0 0 0 0
Table 4 Empirical performance for 100 dimensions
Approach Function

Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Sum Squares
GA Best

4.333 0.6509 2.2E+5 333.5 111.82 37.91 56.50 3.12E+3

Average

4.483 0.6509 2.2E+45 348.37 2. 74E+4 40.07 64.83 3.13E+3

Standard Deviation

0.353 0 1.96E+5 32.76 8.61 3.78 9.79 279.63
PSO Best

6.01 45.72 4.43E4+5 642.57 1.05SE+5 92.07 221.21 6.02E+3

Average

6.78 55.72 7.81E+5 707.86 2.19E+5 104.86 249.20 9.99E+3

Standard Deviation

0.83 10.39 3.04E+5 98.20 9.59E+4 15.81 32.86 3.52E+3
LSRS Best

—6.5E—19 29E-39  9.2E-16 0 5.83E-28 7.81E—-19  5.34E—-19  4.68E—18

Average

—6.5E—19 2.9E-39 1.15E—15 0 6.94E—16 398E—10 6.94E—16  6.98E—16

Standard Deviation

0 0 438E—-16 O 6.63E—16 497E—10  6.63E—16  6.58E—16
Actual optimum 0 0 0 0 0 0 0 0
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Parameters used by LSRS for 10,000 dimensions are
same for 2,000 dimensions but the number of initial arbi-
trary starting points is set to only 10.

4.5.2 Results and comparisons

Results for 50, 100, 250, 500, 750, 1,000 variables obtained
by all the three techniques at the end of search process are
presented in Tables 3, 4, 5, 6, 7 and 8 respectively. The best
and average solution and standard deviation are displayed.
Results obtained by LSRS for 2,000 variables are presented
in Table 9 and results obtained for 10,000 variables are pre-
sented in Table 10.

The convergence of LSRS is illustrated in Figs. 8-15 for
50, 100, 250, 500, 750, 1,000, 2,000 and 10,000 dimensions
respectively. The best objective function value obtained at
the end of each re-start application is depicted. In Fig. 16,
a graphical comparison of the convergence for all the three
techniques during the first 1,000 iterations for functions hav-
ing 1,000 dimensions is provided. The comparison is not
100% fair in terms of number of iterations because LSRS is
re-starting after each 10 iterations, but the authors wish to
illustrate the performance of LSRS when compared to GA
and PSO (also, the big difference regarding the optimum ob-
tained can be deduced from Tables 3-8). In Fig. 17 the so-
lutions obtained at the end of search process for functions
having 10,000 dimensions are depicted. Since only 10 start-

Table 5 Empirical performance for 250 dimensions

ing points were used for this case, the structure of the final
points is easier to demonstrate.

4.5.3 Discussions on the performance and results

As evident from the results presented in tables above and
below, LSRS converges very fast and obtains very accurate
results. Even for 10,000 dimensions, a set of 10 initial start-
ing points are good enough to obtain good performance. It
can be observed that there is not many differences between
the parameters value settings for different number of dimen-
sions. Even for 2,000 and 10,000 dimensions, the same num-
ber of re-startings and the same number of iterations for each
re-start were used.

Empirical and graphical comparisons with GA and PSO
also clearly indicate the big difference between these ap-
proaches in terms of quality of solutions and speed of con-
vergence.

For the Rastrigin test function, for example, LSRS ob-
tained the clear O for minimum and all the starting points
converged to this value, even for 10,000 dimensions.

It is obvious than the greater the number of re-starts the
faster the convergence and the more accurate the results.
A greater number of re-starts will increase the computa-
tional cost (derivatives to be involved and boundaries are to
be modified accordingly). But still the computational cost is
very less compared to other two techniques (GA and PSO).

Approach Function

Ackley Levy Quadric Rastrigin ~ Rosenbrock Schwefel Sphere Sum Squares
GA Best

5.64 1.621 L17E+7 1.53E+3 2.96E+5 195.28 286.73 5.74E+4

Average

5.66 1.621 L17E+7 1.54E+3 3.07E+5 196.31 292.73 5.74AE+4

Standard Deviation

0.41 0 1.06E+6 138.95 2.94E+4 17.64 27.28 5.12E+3
PSO Best

7.50 202.28 9.91E+6 2.51E+3 6.14E+5 340.95 787.48 791E+4

Average

7.60 207.38 1.34E+7 2.6E+3 6.96E+5 231E+10  898.47 9.71E+5

Standard Deviation

0.59 18.33 4.38E+6 225.96 9.93E+4 5.15E+11 54.09 1.5E+4
LSRS Best

—4.3E-19 29E-39 5.7E-13 1.57E-27 5.63E-20  2.02E—17 1.1E—15

Average

—4.3E-19 29E-39  6.09E—13 3.72E—-13 871E-20  3.95E—-17 28E-15

Standard Deviation

0 0 1.86E—13 3.34E—13 8.95E—-21 7.38E—18  7.1E—16
Actual optimum 0 0 0 0 0 0 0
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Table 6 Empirical performance for 500 dimensions

Approach Function

Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Sum Squares
GA Best

7.18 3.24 1.25E+8 4.58E+3 563.638 598.12 1.19E+3 4.07E4+5

Average

7.21 333 1.25E+8 4.59E+3 566.62 600.51 1.20E+3 4.07E4+5

Standard Deviation

0.01 0.244 1.12E+7 409.93 63.22 53.21 107.67 3.63E+4
PSO Best

8.12 544.57 1.41E+8 6.11E+3 2.43E+6 884.67 211.75 4.86E+5

Average

8.14 546.02 1.47E+8 6.13E+3 2.56E+6 891.19 2180.35 5.22E+5

Standard Deviation

0.37 42.36 5.61E+7 11.20 2.17E+5 6.55 31.18 3.55E+4
LSRS Best

—4.3E—19 29E-39  2.12E-11 0 34E-27 291E—19  454E—-16  4.05E-35

Average

—4.3E—19 29E-39  431E-11 0 2.61E—11 4.08E—19  9.0E—16 7.96E—35

Standard Deviation

0 0 1.14E—11 0 2.32E—-11 3.62E-20 1.52E—16 1.95E-35
Actual optimum 0 0 0 0 0 0 0 0
Table 7 Empirical performance for 750 dimensions
Approach Function

Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Sum Squares
GA Best

7.41 4.85 5.64E+8 7.53E+3 872.75 1058.35 2.37E+3 1.07E+6

Average

3116.99 5.05 5.64E+8 7.54E+3 874.64 1060.90 2.38E+3 1.07E+6

Standard Deviation

4.0E+4 0.34 19.96 672.71 67.64 94.26 212.11 9.5E+4
PSO Best

8.56 1.09E+4-3 5.75E+8 9.85E+3 4.91E+6 1.40E+43 3.78E+3 1.26E+6

Average

8.58 1.10E+43 5.75E+8 9.87E+3 5.10E+6 1.46E+12  3.81E+3 1.39E+6

Standard Deviation

0.06 5.06 210.78 16.49 2.8E+5 1.20E+9 20.3 7.84E+4
LSRS Best

1.0E—18 29E-39  5.86E-31 0 5.08E-27 1.95E—18 7.40E—36 1.1E-33

Average

1.0E—18 2.9E-39 1.57E-30 O 5.55E-27 2.45E—18 1.41E-35 2.1E-33

Standard Deviation

1.3E—19 0 3.59E-31 0 1.51E—28 1.94E—19  3.22E-36  4.6E—-34
Actual optimum 0 0 0 0 0 0 0 0
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Table 8 Empirical performance for 1,000 dimensions

Approach Function
Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Sum Squares
GA Best
7.86 6.47 6.28E+8 1.073E+4 1.12E+3 1.49E+3 3.44E+3 2.16E+4-6
Average
7.87 7.17 6.28E+8 1.075E+4 1.12E+3 1492E+3  3.45E+43 2.16E+4-6
Standard Deviation
0.0056 1.07 66.81 482.31 10.8 67.0 155.21 9.72E+4
PSO Best
8.91 1.61E+43 1.5E4+9 1.40E+4 6.46E+4-6 3.9E+19 5.24E+3 2.65E4+-6
Average
9.02 1.62E+43 1.61E4+6 1.40E+4 6.58E+4-6 4.1E+47 5.50E4-3 2.66E4-6
Standard Deviation
0.10 10.97 9.46E+7 20.2 1.86E+5 9.2E+48 2.7E+2 8.94E43
LSRS Best
1.3E—18 29E-39 534E-30 O 6.84E—-27 9.30E—-18  7.97E—19  3.78E-33
Average
1.3E—18 2.9E-39 1.38E-29 0 741E-27 1.12E—17 1.25E—18  7.35E-33
Standard Deviation
4.8E-33 0 3.68E-30 0 1.66E—28 7.33E—-19  2.05E—-19 1.49E-33
Actual optimum 0 0 0 0 0 0 0 0
Table 9 Empirical performance for 2,000 dimensions
Approach Function
Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Sum Squares
LSRS Best
—4.3E—-19 2.9E-39 9.37E—8 0 1.40E—26 241E-17 9.97E—34 7.58E-31
Average
—4.3E—-19 2.9E-39 1.69E—7 0 1.48E—26 3.08E—17 2.35E-33 1.27E-30
Standard Deviation
9.6E—35 0 3.42E-8 0 2.44E—-28 231E—18 6.91E—34 2.02E-31
Actual optimum 0 0 0 0 0 0 0 0
Table 10 Empirical performance for 10,000 dimensions
Approach Function
Ackley Levy Quadric Rastrigin Rosenbrock Schwefel Sphere Sum Squares
LSRS Best
6.5E—17 2.9E-39 5.10E—-23 0 7.45E-26 6.77E—15 3.08E—30 5.58E—-27
Average
7.9E—17 5.2E-31 1.O6GE—22 0 7.53E-26 7.07E—15 3.88E—30 1.02E—-26
Standard Deviation
1.0E—17 34E-31 3.44E-23 0 5.54E-28 2.35E—16 5.60E—31 3.51E-27
Actual optimum 0 0 0 0 0 0 0 0
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Fig. 8 LSRS convergence for 50 dimensions
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It takes about 5 minutes for LSRS to converge for functions
having 10,000 dimensions while for GA and PSO it takes
few hours even for 1,000 dimensions (due to the great num-
ber of iterations which these techniques should use in order
to improve the performance). In terms of number of function
evaluations LSRS is more computationally economical then
PSO and GA (we refer here to objective function as well as
derivatives).

4.6 Strengths and weakness of LSRS algorithm

It is well known that any approach for any kind of problems
does have some weak and strong merits. There is no sin-
gle algorithm which can perform perfect (or be the best) for
all possible classes of problems. This is in accordance with
the no free lunch theorem, which explains that for any algo-
rithm, any elevated performance over one class of problems
is exactly paid for in performance over another class [36].
In sum, one should be sceptical of claims in the literature
on optimization algorithms that one being proposed is sub-
stantially better than most others. Such claims are often de-
fended through some simulations based on applications in
which the proposed algorithm performed better than some
familiar alternative.

We summarize some of the strengths and weakness of the
proposed approach and also discuss about its suitability and
inadequacy respectively for some classes of problems.

Strong points:

e It can be applied for greater number of dimensions
(greater than 10,000) due to lower computational time
compared to other approaches. For 10,000 variables,
LSRS converges in about 5 minutes on average.

e It is simple to implement and use.

e It uses similar parameters for dimensions varying be-
tween 250 and 10,000, which means the technique is not
much depending on the number of variables.

e If the computational tools are powerful enough, can be
extended and applied for any number of dimensions.

o All the starting points converge to the optimum point (the
technique is built like that).

e It can be effectively used for functions having a high num-
ber of local optima. This is due to the fact that the search
starts with a set of initial points and there will be at least a
subset which will avoid getting trapped in some of the lo-
cal optima. Almost all considered test functions are highly
multimodal.

Weak points:

e Require the gradient information of the function which
might require more time to compute in case if the func-
tion is having different partial derivatives for each dimen-
sion. This implies it is highly suitable for functions for

which the partial derivatives are having the same equa-
tion or there are at least some partial derivatives having
the same equation. But if we are taking into considera-
tion the existing mathematical software, which can easily
calculate the partial derivatives this is not such a big in-
convenience.

e It is restricted to a special class of functions which are
continuous differentiable.

e It is more suitable for smaller domains of definition
(ranges); for bigger domains LSRS might require a
greater number of re-starting procedures (the interval
could be reduced slowly).

5 Conclusions

A new multi-dimensional method for solving unconstraint
global optimization problems is proposed in this paper. We
introduced a modified line search technique called Line
Search Re-Start (LSRS). The modified classical mathemat-
ical technique which incorporates the multi start method
and using the re-starting techniques is found to be computa-
tionally efficient for large dimensional functions optimiza-
tion problems. The computational comparisons with two
well known global optimization techniques—Genetic Algo-
rithms and Particle Swarm Optimization—clearly illustrates
the superiority of the proposed approach and its indepen-
dence for the number of dimensions involved.

The LSRS technique makes use of gradient information,
which makes it to be restricted to a special class of functions
(continuous and differentiable). But it appears to be very
efficient for multi-dimensional optimization problems. We
presented the empirical results and graphical illustrations for
functions having up to 10,000 variables. The proposed tech-
nique can be used without any modifications for a higher
number of variables.

We also intent to develop and adapt the LSRS technique
so that it can be further applied for constraint optimization
problems which are also of great interest in some practical
optimization problems.
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