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& This article deals with the design optimization of a squirrel-cage three-phase induction motor,
selected as the driving power of spinning machines in the textile industry, using three newly
developed versions of differential evolution (DE) algorithms called modified DE versions (CMDE,
GMDE, and LMDE). Efficiency, which decides the operating or running cost of the motor (indus-
try), is considered as the objective function. First, the algorithms are applied to design a general
purpose motor with seven variables and nine performance-related parameters with their nominal
values as constraints. To make the machine feasible, practically acceptable to serve in textile indus-
tries, and less costly to operate, certain constraints are modified in accordance with the demands of
the spinning application. Comparison of the optimum designs with the industrial (existing) motor
reveals that the motor designed by the proposed algorithms consumes less power input.

INTRODUCTION

Conservation of energy is an essential step toward overcoming the
growing problems of the worldwide energy crisis and environmental degra-
dation. In particular, developing countries are interested in increasing their
awareness of inefficient power generation. Increasing energy efficiency in
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industrial systems not only will help to increase the financial health of the
industry, but it will also help to reduce the global warming rate, which is a
main concern of policy makers across the world.

In energy-intensive industries such as textiles, steel, glass, and the like,
savings of up to 20%, generally, could be achieved through investment in
or implementation of energy-efficient systems. In an integrated textile plant,
appreciable amounts of energy could be saved or conserved by appro-
priately managing steam distribution, adjusting the air=fuel ratio in the
boilers, installing cogeneration systems, improving the electrical power fac-
tor, reducing distribution losses, reducing harmonics effects, and so forth.

Three-phase induction motors (IMs) are the most commonly used
machines in various electrical drives. About 70% of all industrial loads on
a utility are represented by induction motors (Maljkovic, Cettolo, and
Pavlica 2001). Generally, these motors have a high efficiency at rated speed
and torque. However, the operation of these motors at partial loads (no bal-
ance between iron and copper losses) results in a considerable reduction in
efficiency and in the power factor. The efficiency and power factor can
be improved by adjusting the rotor flux in accordance with the load
(Kioskesidis and Margaris 1996). To achieve this goal, the IM should either
be redesigned optimally by modifying materials and construction with the
help of numerical techniques or be fed through an inverter.

To conserve electrical energy in the industrial sector through a reduc-
tion in losses (minimum power consumption) of the IM, it is particularly
interesting to deal with energy-intensive industries. For the present study,
we have considered the case of textile industries because they are found
to be energy intensive (4% energy cost in total input cost) in comparison
with other industries such as chemical, food, computer manufacturing,
and others (Palanichamy et al. 2001).

Over the years, many efforts have been made to solve the IM design
problem by incorporating different kinds of constraints or objectives,
including single and multiple objectives, through various mathematical
programming and optimization techniques. Several techniques, including
the classical ones (such as that of Hook and Jeeves and the Rosenbrok
method, etc.) and the unconventional ones such as genetic algorithms
(GA) and simulated annealing (SA), have been employed judiciously to
improve the performance of an IM. A brief review of the methods used
for the design optimization of IMs is given in the following section.

In the present study, we have considered the design optimization of a
squirrel-cage three-phase IM, which is selected as the driving power of
the spinning machine in the textile industry. The mathematical model of
the problem, which is nonlinear in nature, subject to various constraints,
is solved with the help of a basic differential evolution (DE) algorithm
and its three modified variants, Cauchy Mutated Differential Evolution,
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Gaussian Mutated Differential Evolution, and Laplace Mutated Differential
Evolution (CMDE, GMDE, and LMDE, respectively).

The organization of this article is as follows: the following section
provides information about previous works on IM design. ‘‘Formulation of
IM Design Problem’’ discusses the problem formulation with variables and
constraints. The function of the textile spinning machine and its load dia-
gram are given in ‘‘Textile Spinning Machine.’’ The basic and the modified
DE algorithms are briefly described in ‘‘Differential Evolution Algorithms.’’
The experimental settings and the results of proposed algorithms are dis-
cussed in ‘‘Parameter Settings’’ and ‘‘Results and Discussion,’’ respectively.
‘‘Conclusions’’ are stated in the final section of the article.

PREVIOUS WORKS ON INDUCTION MOTOR DESIGN

Optimal design of IM implies the design modifications of materials and
construction to optimize the efficiency of the motor. In order to maximize
efficiency and consequently minimize the electrical energy consumption of
a three-phase induction motor, many optimization techniques have been
used and suggested in the published literature. In this section we give a
brief overview of both conventional as well as unconventional techniques
used by researchers to optimize the efficiency of an induction motor.

Conventional Optimization Techniques

In addition to statistical methods (Han and Shapiro 1967) and the
Monte Carlo technique (Anderson 1967) in the late 1960s, various math-
ematical programming techniques have been employed for optimizing
the design of an IM. Appelbaum and Erlicki (1964) formulated the cost
function of an IM, and they developed an algorithm that they applied to
minimize it (Appelbaum and Erliki 1965).

A survey of various methods of nonlinear programming (Bharadwaj,
Venkatesan, and Saxena 1979b) showed that the ‘‘sequential unconstrained
minimization technique’’ (SUMT) developed by Fiacco and McCormik
(1964a, 1964b) is quite general in nature and can be used to solve the prob-
lem of IM (Singh and Singh; Ramarathnam and Desai 1971; Murthy et al.
1994). Ramarathnam, Desai, and Subba Rao (1973) made a comparative
study of various minimization techniques such as steepest descent, Davi-
dion–Fletcher–Powell method, Powell’s method, direct search method,
and random search method for optimization of IM design.

The other search techniques that have been used successfully in the
past for the optimal design of IM include the following: the Hook–Jeeves
(HJ) method (Faiz and Sharifian 1995), the modified Hook–Jeeves method
(MHJ) (Faiz and Sharifian 2001; Li and Rahman 1990), the Han Powel
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method (Fei, Fuchs, and Haung 1989), the modified Han Powel method
(Schittkowski 1985), and the unconstrained Rosenbrock (Rosenbrock
1960) and constrained Rosenbrock methods (Hill algorithm; Bharadwaj
1979; Bharadwaj, Venkatesan, and Saxena 1979a).

In Li and Rahman (1990), the efficiency of a three-phase IM is opti-
mized by MHJ, and the results are compared with the Han Powel method
and the simple HJ method. Faiz and Sharifian (1995) considered efficiency,
operating cost, and material cost as objective functions for a new design of
motor and optimized by using the HJ method. The effects of supply
voltage variation in the motor performance are analyzed, and it is con-
cluded that higher efficiency can be obtained by increasing the voltage.
The authors (Faiz and Sharifian 1995) observed that although different
optimization techniques may be used, the results obtained are more or less
similar.

In the pump load systems (Murthy et al. 1994), the following modifica-
tions help to consume minimum energy: (1) stator core length increase up
to 130%, (2) number of stator winding turns decrease by up to 10%. An
energy-efficient irrigation pump is designed using SUMT with interior
penalty function approach in Murthy et al. (1994).

In Koechli et al. (2004), supply frequency, environment, and inrush cur-
rents are considered as constraints in addition to normal constraints for an
optimum design of a hydraulic pump in aerospace applications.

A global optimization approach is introduced by Idir, Chang, and Dai
(1997) based on the information of the error function at each computa-
tional step. Based on this information, the step size of each variable is auto-
matically adjusted such that the error is reduced and thus approaches the
global solution. Here, error is taken as an objective function (for efficiency
maximization, calculate the percent efficiency in each step and find its
error [100% is percent efficiency]). If error is greater, a large step size is
used for adjusting variables.

Torque pulsation is considered in (Singh and Singh 1993) as an
additional constraint for an inverter-fed IM design. The flux and higher
order harmonic currents are as low as possible in order to have least pul-
sation. In addition, stack length and stator and rotor current densities
are decreased.

Sequential quadratic programming (SQP) for a nonlinear constrained
optimization technique is applied to IM design by Singh and Sarkar (1992).
Stator copper losses and core losses including harmonic losses are reduced
by optimal selection of stator slot design, described in Kim, Kim, and Kwon
(2005). Finite element method (FEM) is used to design the slot and, hence,
core and winding losses are reduced by 2.22%. IM efficiency is improved in
Boglietti et al. (2005) by modifying the production technological process,
called no tooling cost.

812 C. Thanga Raj et al.
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Unconventional Techniques

The main disadvantage with the mathematical programming techni-
ques is that they are highly sensitive to starting points, owing to a non-
monotonic solution. Consequently, the researchers began to consider
unconventional algorithms.

It was shown in Cunkas and Akkaya (2006) that the application of GAs
to IM design results in a 25% reduction of the total material cost. SA
(Bhuvaneswari and Subramanian 2005), DE (Padma, Bhuvaneswari, and
Subramanian 2007), and the particle swarm optimization (PSO) algorithm
and its improved versions (Padma, Bhuvaneswari, and Subramanian
2007; Thanga Raj, Srivastava, and Agarwal 2008a; Wieczorek, Gol, and
Michalewicz 1998) are used to design optimization of a three-phase IM,
and it was shown that the performance is better than that of the
conventional methods.

Hybridization of evolutionary programming (EP) and SA was applied to
IM design in Padma, Bhuvaneswari, and Subramanian (2007). Here, EP was
used to search the optimum point, whereas SA assisted EP to converge
toward the optimum point. Evolutionary algorithm (EA)-based algorithm
is applied in Weiczorek, Gol, and Michalewicz (1998) and produced good
results in terms of convergence time=global convergence and the ability to
handle discrete variables. Improved evolution strategy (ES; hybrid of SA
and GA) is considered in Kim, Lee, and Jung (1998) for the motor design
serving an electric vehicle. Shaking technique is included to avoid local
minima, which appear in conventional ES.

Although DE is a robust and a popular optimization tool for solving
complex optimization problems, as far as the authors’ knowledge, motor
design for textile mill application using DE has not been reported formerly,
and comparison has not been made with the existing industrial motors. In
this article an effort has been made to apply DE and its modified versions to
the above-mentioned application.

FORMULATION OF IM DESIGN PROBLEM

The design of IMs implies the determination of the geometry and all
data required for manufacturing in order to satisfy a vector of performance
variables together with a set of constraints. A large number of design para-
meters are involved in the design of an induction machine. Selection of
objective function, variables, and constraints are the main steps. The
proper optimization requires an intelligent selection of objective function
and constraints according to the drive’s requirement, and further selection
of variables that affect the objective function and the constraints.

Design Optimization of Textile Spinning Motor 813
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The general nonlinear programming problem is given by nonlinear
objective function f, which is to be minimized =maximized with respect
to the design variables X¼ (x1, x2, . . . ., xn) and the nonlinear inequality
and equality constraints. This can be formulated as

Minimize=Maximixe f ðX Þ

Subject to: gjðX Þ $ 0; j ¼ 1; 2; . . . ; p ð1Þ

hkðX Þ ¼ 0; k ¼ 1; 2; . . . ; q ð2Þ

ximin $ xi $ ximax ði ¼ 1; . . . . . . ;nÞ; ð3Þ

where p and q are the number of inequality and equality constraints,
respectively, and n is the number of variables.

For design optimization of an IM, the design variables, constraints,
objective function, and design equations are given in the following
subsections.

Variables

A set X of seven independent variables is listed below:

1. ampere conductors=m, x1
2. ratio of stack length to pole pitch, x2
3. stator slot depth to width ratio, x3
4. stator core depth (mm), x4
5. average air gap flux densities (wb=m2), x5
6. stator winding current densities (A=mm2), x6
7. rotor winding current densities (A=mm2), x7

Constraints

Constraints play an important role in making a motor practically feas-
ible and acceptable. It should be noted that the constraint that gets most
affected by the variation in the objective function should be considered
with special care. The constraints imposed into the design of an IM for
general applications are as follows:

1. maximum stator tooth flux density, wb=m2$ 2
2. stator temperature rise,%C$ 70
3. full load efficiency, pu& 0.8
4. no load current, pu$ 0.5

814 C. Thanga Raj et al.
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5. starting torque, pu& 1.5
6. maximum torque, pu& 2.2
7. slip, pu$ 0.05
8. full load power factor & 0.8
9. rotor temperature rise,%C$ 70

Objective Function

In order to reduce the running cost of the motor with the typical high
load cycles of industrial or commercial applications, higher efficiency is
more important. We have therefore considered the maximization of motor
efficiency as an objective function.

Design Equations

The electromotive force (EMF) equation for a motor is given by

Eph ¼ 4:44Kwf /Tph: ð4Þ

The output equation for a three-phase IM is

S ¼ 3EphIph'10(3 KVA: ð5Þ

Ampere conductors per meter is

x1 ¼
6TphIph
pD

: ð6Þ

Average air gap flux density is x5 ¼
/p
pDL

: ð7Þ

Stator slot depth is dss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1000Sx3

2:22KwfY 2S1Sf x2x5x6

s

: ð8Þ

Weights of stator teeth, stator core, and iron are expressed (in kg) as

Wt ¼
diS1dsstsLi

103
; ð9Þ

Wc ¼
dipðOD ( 0:001x4Þx4Li

103
; ð10Þ

Design Optimization of Textile Spinning Motor 815
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Wr ¼ diLi
ðD2 ( ID2Þ

4
( ðS2asr Þ

106

" #
; ð11Þ

where ts ¼
pðD þ 0:001dssÞ

S1
( 0:001dss

x3
: ð12Þ

Weights of stator and rotor windings are expressed as

Wsw ¼ Sdcðx2 þ 1:15þ 0:12Þ10(3

2:22fKwYx2x5x6
; ð13Þ

Wrw ¼ S2abLr10
106

6

þ 2paeDe

106
dr ; ð14Þ

where ab ¼
382:88S

KwfS2Y 2x2x5x7:

Efficiency
The efficiency of an IM can be calculated as

g ¼ 1000Po

1000Po þ Pcus þ Pcur þ Piron þ Pmech
' 100; ð15Þ

where stator copper loss Pcus ¼ 3I 2ph ' Rs,

stator resistance Rs ¼
qcEphx6

2:22KwfIphYx5
þ 1þ 1:15

x2
þ 0:12

x2Y

$ %
,

rotor copper loss Pcur ¼
qr S2I

2
b

ab
Lr þ 2De

p

$ %
,

and iron loss Piron ¼ Wt' K1 þWc' K2:

K1 and K2 are specific weights (kg=m3) of the teeth and the core,
respectively. Mechanical loss (Pmech), which comprises friction and windage
losses, is considered as assigned parameters. For more details on the design
equations, please refer to Thanga Raj (2009).

Operating Cost
On an average, a standard motor consumes electricity equivalent to

60–100 times its purchasing price during its working life. Total running cost
of the motor comprises (1) energy charge and (2) fixed demand charge.

816 C. Thanga Raj et al.
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Energy Cost Calculation. The energy cost (Ecost) of the IM per year is
calculated using Equation (16):

E cos t ¼ Ce' h'Pin; ð16Þ

where Ce is Energy cost (U.S. $=kWh), h is Total operating hour=year,
Pin is Input power of the motor (KW). Power factor penalty is not con-
sidered in this article because almost all the industries have centralized
power factor correction equipments.

Demand Cost Calculation. Demand charge cost (Dcost) consumed by the
motor per year can be calculated as

D cos t ¼ Cd'12'Pin; ð17Þ

where Cd is Demand cost per month (U.S. $)
The total operating cost (TOC) per year of the motor is

TOC ¼ Pin Ce'hð Þ þ Cd'12ð Þf g: ð18Þ

TEXTILE SPINNING MACHINE

A spinning machine manufactures the cotton into yarn, which is wound
on spindles (shown in Figure 1) and is used to feed a cone-winding
machine. After that it can be used to make end products (clothing, etc.)
with the help of a weaving machine. A three-phase squirrel-cage IM is
employed as the main drive, and its shaft load is decided by the quantity

FIGURE 1 Textile spinning ring frame.
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of yarn in the spindles, which varies from zero (when the process starts) to
full (when process completes). Therefore, the motor shaft load varies from
very light to rated, shown in Figure 2. The discrete nature of the load dia-
gram is considered for easy analysis. In Figure 2, ‘‘T’’ is the time consump-
tion for the completion of one process.

As shown in Figure 2, the motor employed in the spinning machine
undergoes partial loads during most of its operating hours. Also with this
feature, there is no sudden change in the load torque and the required
starting torque is less. It is noted that the motor efficiency and power factor
are poor in the case of partial load. To improve them, new designs suitable
for textile-mill applications are proposed by modifying the constraints.
No-load current, the main source for the core losses in the motor, should
be maintained as low as possible during light or partial loads. The modified
constraints are

. no load current, pu$ 0.35

. starting torque, pu& 1.2

. maximum torque, pu& 1.75

DIFFERENTIAL EVOLUTION ALGORITHMS

Basic Differential Evolution

Differential evolution is an EA proposed by Storn and Price (1995). DE
is similar to other EAs, particularly GAs (Goldberg 1986), in the sense that
it uses the same evolutionary operators such as selection, recombination,
and mutation similar to that of GA. However, it is the application of these
operators that make DE different from GA; whereas in GA crossover plays a
significant role, it is the mutation operator that affects the working of DE

FIGURE 2 Average load diagram of a typical spinning ring frame drive motor.
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(Karaboga and Okdem 2004). The working of basic DE may be described as
follows:

Mutation. This is the first phase of the DE algorithm. In this phase a
donor vector is created, corresponding to each member or target vector
Xi,g¼ (x1,i,gþ1,. . ., xN,i,gþ1) in the current generation. For an N-dimensional
search space, each target vectorXi, g, a mutant vector Vi,gþ1¼ (v1,i,gþ1,. . .,
vN,i,gþ1) is generated as

Vi;gþ1 ¼ Xr1 ;g
þ F 'ðXr2 ;g

( Xr3 ;g
Þ; ð19Þ

where r1, r2, r32f1, 2, . . ., NPg are randomly chosen integers and must be
different from each other and also different from the running index i.
Scaling factor F (>0) controls the amplification of the differential
evolutionðXr2 ;g

( Xr3 ;g
Þ.

Crossover. Once the donor vector is generated in the mutation phase,
the crossover phase of DE is activated. The crossover operation of DE
helps in increasing the potential diversity of the DE population. The DE
family of algorithms may use two types of crossover schemes: exponential
(exp) and binomial (bin). During the crossover operation, the donor vector
exchanges its components with the target vector Xi,g to form a trial vector
Ui,gþ1¼ (u1,i,gþ1,. . ., uN,i,gþ1). In the present study we shall follow the
binomial scheme. According to this scheme, the trial vectors are generated
as follows:

uj;i;gþ1 ¼
vj;i;gþ1 if r and j $ Cr _ j ¼ k
xj;i;g otherwise

&
; ð20Þ

where j¼ 1 . . .N, k 2 f1,. . ., Ng is a random parameter’s index, chosen once
for each i. A positive control parameter, Cr, is set by the user.

Throughout the present study we shall follow DE=rand=1=bin version of
DE, which is perhaps the most frequently used version and shall be referred
to as the basic version.

Selection. The final phase of the DE algorithm is that of selection,
which determines whether the target or the trial vector generated in the
mutation and crossover phases will survive to the next generation. The
population for the next generation is selected from the individual in
the current population and its corresponding trial vector according to
the following rule:

Xi;gþ1 ¼
Ui;gþ1 if f ðUi;gþ1Þ $ f ðXi;g Þ
Xi;g otherwise

&
: ð21Þ

Design Optimization of Textile Spinning Motor 819
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Thus, each individual of the advance (trial) population is compared with
its counterpart in the current population. The one with the lower objec-
tive function value (in the case of the minimization problem) will survive
from the tournament selection to the population of the next generation.
As a result, all the individuals of the next generation are as good as, or
better than, their counterparts in the current generation. In a DE algor-
ithm, the trial vector is not compared against all the individuals in the
current generation but only against its counterpart in the current
generation.

Modified Differential Evolution Algorithms

DE has emerged as one of the most popular techniques for solving
engineering design problems (Omran, Engelbrecht, and Salman 2005;
Das, Abraham, and Konar 2008; Thangaraj, Pant, and Deep 2010). How-
ever, it has been observed that the performance of DE is sometimes not
up to the expectations. As with most of the population-based stochastic
search techniques, DE also suffers from the drawbacks, such as premature
convergence and stagnation of population (Lampinen and Zelinka 2000).
Several attempts have been made in literature to improve its performance
(Omran, Salman, and Engelbrecht 2005; Rahnamayan, Tizhoosh, and
Salama 2008; Brest et al. 2006; Thangaraj, Pant, and Abraham 2010). In
continuation with the efforts to improve the working of DE in terms of con-
vergence rate as well as solution quality, in this article we propose three
modified versions of DE; viz. GMDE, CMDE, and LMDE for optimization
of IM design.

Here we would like to mention that a part of this work, namely the
CMDE algorithm, is already published in conference proceedings
(Thangaraj et al. 2010), where we used it for solving unconstrained test
problems. Encouraged by its performance, in this article we developed
other modified versions and applied them to optimize the design of IM
described in ‘‘Formulation of IM Design Problem.’’

The proposed algorithms are the simple variations of basic DEs, incor-
porating a mutation operator based on local neighborhood search. Each
algorithm starts as the basic DE algorithm, using the same mutation, cross-
over, and selection operators. However, once the selection process is com-
plete, in other words, at the end of each iteration, the best individual (say,
Xbest) of the population is mutated with the help of proposed operators to
explore its neighborhood with the hope of finding a better solution. The
mutation process continues until there is an improvement in the fitness
of the best particle.

The mutation operators employed in the present study are based
on Gaussian, Cauchy, and Laplace distributions and the corresponding

820 C. Thanga Raj et al.
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algorithms are termed GMDE, CMDE, and LMDE, respectively. The pro-
posed mutation schemes are defined as follows:

GMDE scheme:

X 0
best;g ¼ Xbest;g þ N ð0; 1Þ'jXr1;g ( Xr2;g j;

where N (0,1) is the Gaussian distributed random number with mean 0 and
standard deviation 1.

CMDE scheme:

X 0
best;g ¼ Xbest;g þ C'jXr1;g ( Xr2;g j;

where C is the Cauchy distributed random number.
LMDE scheme:

X 0
best;g ¼ Xbest;g þ L ' jXr1;g ( Xr2;g j;

where L is the random number generated by using Laplace distribution.
The symbols Xr1,g and Xr2,g have the usual meanings as given in the pre-

vious section. The algorithmic steps of modified DE algorithms are given in
Figure 3:

FIGURE 3 Flow of modified DE algorithms.
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PARAMETER SETTINGS

Induction Motor Settings

Specifications for a three-phase squirrel-cage IM considered in the
present study are summarized as follows:

. Capacity¼ 7.5 kW

. Voltage per phase¼ 400 volts

. Frequency¼ 50Hz

. Number of poles¼ 4

. Number of stator slots¼ 36

. Number of rotor slots¼ 44

Algorithmic Settings

Control Parameters’ Settings. There are three main control parameters
associated with DE, which require a proper setup (fine-tuning) for the
optimum performance of the algorithm. After performing a number of
experiments, we chose the following parameter settings for the proposed
algorithms for all the problems considered in the present study:

. Population size¼ 50

. Crossover Rate¼ 0.5

. Scaling Factor¼ 0.5

Stopping Criteria. For all the algorithms, the search process is terminated
when one of the following conditions is satisfied:

Maximum number of generations is reached (assumed 500 genera-
tions) or

j fmax - fmin j< 10(4 where f is the value of objective function.

Number of Runs. Because DE is a stochastic technique, more than one
run is required in order to ascertain the final solution. For this study, a total
of 30 runs for each experimental setting were conducted, and the best
solution throughout the run was recorded.

Constraint Handling. Constraints are handled according to the appro-
ach based on repair methods suggested in Pant, Thangaraj, and Singh
(2009).

PC Configuration. The algorithms were developed in DEV Cþþ and
were executed on an Intel Core 2 Duo machine with 2 GB RAM. The

822 C. Thanga Raj et al.
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random numbers were generated using inbuilt r and () function with the
same seed for every algorithm.

RESULTS AND DISCUSSION

In this section we discuss the numerical results, which are categorized
into two sections: (1) general purpose motor and (2) motor for textile
spinning applications.

Result Analysis of General Purpose Motor

The results of a fresh design of the general purpose IM obtained from
different optimization algorithms are shown in Table 1. The modified DE
algorithms produced better efficiency in comparison with the basic DE
algorithm. One reason this was achieved is less rotor resistance (shown in

TABLE 1 Motor Design Results for General Applications

Optimization algorithms

Quantity DE CMDE GMDE LMDE

Stator bore diameter (m) 0.158099 0.185668 0.159151 0.2099
Stator outer diameter (m) 0.276065 0.246692 0.243376 0.313901
Stack length (m) 0.116239 0.181724 0.205027 0.134488
Stator resistance (X) 1.5127 0.866218 0.657637 0.807496
Rotor resistance (referred to stator, X) 1.46183 0.813009 0.821345 0.832499
Stator reactance (X) 7.374 0.8625 1.2314 0.9504
Rotor reactance (X) 1.9285 0.3741 0.4369 0.3320
Magnetizing reactance (X) 86.3597 98.2565 84.2817 84.2509
Efficiency 0.882905 0.922966 0.922293 0.914953
Power factor 0.892607 0.91484 0.893444 0.894768
Starting torque to rated torque ratio 1.73409 1.56141 1.69261 1.60564
Pull out torque to rated torque ratio 2.95188 3.69442 3.92984 3.73828
Cost of the materials ($) 226.535 229.92 287.304 311.088
Weight of the materials (Kg) 43.1443 39.5461 51.4764 57.3763
Stator slot width (m) 0.005849 0.009485 0.007847 0.007825
Stator slot depth (m) 0.021907 0.017404 0.023542 0.023906
Rotor slot width (m) 0.004785 0.007761 0.00642 0.006402
Rotor slot depth (m) 0.006314 0.005935 0.006516 0.00645
Stator core depth (m) 0.037076 0.013108 0.018571 0.028095
Ampere conductor per meter 22096.2 15000 16519.7 13491.1
Air-gap flux density (wb=m2) 0.694357 0.474362 0.519606 0.557591
Stator winding current density (A=mm2) 6.79675 4.20569 3.54769 3.77391
Rotor winding current density (A=mm2) 7.01596 3.66919 3.81299 4.16138
Stator tooth flux density (wb=m2) 1.98255 1.83552 1.7858 1.61982
Stator temperature rise (%C) 47.8333 21.4415 32.1066 36.9625
No-load to full-load current ratio 0.474747 0.41723 0.486525 0.486783
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Table 1) and, hence, fewer rotor copper losses in the motors designed by
modified algorithms. Because of less rotor resistance, starting torques in
the proposed designs using modified algorithms are lower than the basic
version, but they are good enough to start the machine. Proposed designs
using modified algorithms offer less resistance in the stator windings and,
hence, fewer stator copper losses. Iron losses, proportional to the weight of
iron used, are lower in CMDE in comparison with the other algorithms.
Because stator and rotor losses (main sources for stator temperature rise)
are fewer in the designs using modified algorithms, temperature rise in
the motor is lower in comparison with the DE algorithm.

The permissible limit for maximum stator tooth flux density has been
taken as 2.0 wb=m2, and this value in optimized designs using modified
algorithms is lower than that of the basic DE algorithm. Higher value of
flux density is offered in DE to produce lower material cost in comparison
with CMDE, GMDE, and LMDE. As a result of this, the winding current
densities used in DE have comparatively much higher values. Use of
such a high current density requires many fewer slot dimensions and
provides more tooth width, thus reducing the saturation in the teeth
portion.

In addition, with the increase of efficiency of the motor using modified
algorithms, a small increase in the power factor is observed. On the other
hand, there is an increase in the manufacturing cost of the machine by
1.5%, 26.8%, and 37.3% in CMDE, GMDE, and LMDE algorithms, respect-
ively. This is because of increase in the weights of active materials. Because a
motor consumes electricity equivalent to its manufacturing cost in just
three weeks of continuous use, a small increase in manufacturing cost does
not produce any significant effects on process industries. Cost per weight
($=kg) of iron and copper are considered 4.7 and 8.2, respectively, as in
Faiz et al. (2000).

Result Analysis of Motor Design for Textile Spinning
Applications

The results of the design of the textile spinning drive motor obtained
from different optimization algorithms are shown in Table 2. GMDE and
CMDE produced higher full-load efficiency of the motor in comparison
with DE and LMDE. However, these values are higher in the case of the
general purpose motor designed by modified DE versions (shown in
Table 1). The limitation in no-load current and the corresponding
magnetizing current are the reasons for this. Higher power factor is
achieved in the new designs because of less magnetizing current in com-
parison with the general purpose motor. Manufacturing costs of new
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designs are increased as a result of the increased amount of active materials
used.

To see the performance of specially designed motors throughout their
operations, the motor parameters are extracted from the Table 2 and are
simulated with MATLAB=SIMULINK software. The results are compared
with an industrial motor (equivalent circuit parameters are taken from
the catalogue: Rs ¼ 0:7384; R 0

r ¼ 0:7402; Ls ¼ Lr ¼ 3:045 mH; Lm ¼ 0:1241)
and are shown in Figures 4(6. There are large differences, especially at light
load regions as shown in Figures 4 and 5, in power consumption between
industrial motors and newly designed motors using DE and its modified ver-
sions. At region t5 (full load), DE- and LMDE-based designs consumed more
power in comparison with other designs. Starting torque and pull-out
torques in all designs are sufficient to drive the load. To validate the above
results, stator currents (shown in Figure 6) drawn from the supply of the
motor are higher in an industrial motor at all loads, and the current differ-
ence is more in light-load regions.

TABLE 2 Motor Design Results for Textile Spinning Applications

Optimization algorithms

Quantity DE CMDE GMDE LMDE

Stator bore diameter (m) 0.146064 0.189578 0.257464 0.166297
Stator outer diameter (m) 0.267057 0.292955 0.355953 0.25599
Stack length (m) 0.203214 0.155314 0.156974 0.209098
Stator resistance (X) 1.48236 0.691805 0.863041 1.0011
Rotor resistance (referred to stator, X) 1.70082 1.45168 1.29001 1.76258
Stator reactance (X) 1.9848 1.6968 0.96648 2.0229
Rotor reactance (X) 0.76616 0.4381 0.3278 0.6279
Magnetizing reactance (X) 111.553 118.333 129.112 128.764
Efficiency 0.866457 0.903068 0.896156 0.884736
Power factor 0.916431 0.918119 0.932157 0.924024
Starting torque to rated torque ratio 1.56518 1.426 1.45149 1.50955
Pull out torque to rated torque ratio 2.67911 2.88256 2.99502 2.6891
Cost of the materials ($) 367.751 313.605 410.158 307.778
Weight of the materials (Kg) 72.201 55.2116 75.8986 56.722
Stator slot width (m) 0.005666 0.009301 0.010425 0.007451
Stator slot depth (m) 0.020224 0.031689 0.021926 0.024846
Rotor slot width (m) 0.004636 0.00761 0.00853 0.006096
Rotor slot depth (m) 0.006199 0.004559 0.004153 0.004886
Stator core depth (m) 0.040273 0.02 0.027319 0.02
Ampere conductor per meter 21735.7 17690.5 11714.4 19271.7
Air-gap flux density (wb=m2) 0.473049 0.451398 0.365649 0.4
Stator winding current density (A=mm2) 6.90619 2.83678 3.28976 4.31546
Rotor winding current density (A=mm2) 6.70309 5.86621 5.16657 6.52796
Stator tooth flux density (wb=m2) 1.33986 1.5323 1.14925 1.25017
Stator temperature rise (%C) 51.2437 36.6698 30.7832 36.0389
No-load to full-load current ratio 0.34971 0.346997 0.318534 0.319121
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Economic Analysis

Economic analysis of the proposed design with respect to the given load
diagram at the following electricity tariff and assuming five processes per
day and 355 days of operation=year is summarized in Table 3.

. Maximum demand (KVA) charges: U.S. $6.66=month

. Energy (kWh) charges: U.S. $0.077=kWh (1 U.S. $¼ 45 Indian rupees,
approximately).

FIGURE 4 Simulation results of proposed designs for textile mill load diagram.

FIGURE 5 Comparison of power consumption in motors with different designs. (Color figure available
online.)
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GMDE- and CMDE-based designs offer more savings ($646 and $622,
respectively) in terms of operating cost in comparison with an industrial
motor. There is no savings observed on the DE-based design because of
excess losses in the motor, as mentioned earlier.

FIGURE 6 Line current of the motor at different loads. (Color figure available online.)

TABLE 3 Economic Analysis of Proposed Designs

Less power consumption (kW) of proposed
motors in comparison with industrial motor

Algorithms t1 t2 t3 t4 t5

Total
kWh
saving

Ecost
($=year)

Dcost
($=year)

Total
saving

($=year)

DE 0.790 0.402 0.455 (0.501 (1.858 – – – –
CMDE 0.836 0.559 0.864 0.445 0.442 þ2.703 369 251.43 620.43
GMDE 0.858 0.575 0.879 0.466 0.512 þ2.801 383 263 646
LMDE 0.803 0.509 0.710 0.086 (0.314 þ1.948 266 147 413
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CONCLUSION

In the present study we considered the design optimization of a
squirrel-cage three-phase induction motor by employing one basic and
three modified DE algorithms, namely CMDE, GMDE, and LMDE. Such
type of study is very useful in the present-day scenario when energy conser-
vation is of significant and primary importance. A 7.5 kW motor has been
designed as an illustrative example. Textile spinning load was considered
as the input of design optimization for minimum operating cost of the
motor. The results obtained by the algorithms were compared with the
typical industrial motor. On the basis of the results obtained, the following
conclusions may be drawn:

. Out of the four algorithms considered, GMDE and CMDE are apparently
more suitable for the design of IMs for industrial applications. LMDE did
not perform as well as the other algorithms, and the performance of the
basic DE was the worst.

. We observed that the no-load current constraint was more influenced in
the optimized design for minimum power consumption or more savings,
especially on light loads.

. In terms of energy conservation, we see that the efficiency obtained by
DE in the case of motor designs for general applications is 0.88 whereas,
for CMDE and GMDE, the efficiency comes out to be around 0.92.

. As far as the operating cost effectiveness is considered, we can see that
$646 can be saved in a 7.5 kW motor per year if it is designed with the
consideration of service conditions, i.e., load diagram. This savings will
be more in the case of large capacity motors.

. We also see that there is a small increase in the manufacturing cost of the
motor, which, however, can be allowed when efficiency or operating cost
optimization is performed. This will not create any significant effect on
the economics of process industries.

. As far as power quality issues as a result of power electronic controllers
and extra investments are considered, we can say that this approach
would be an attractive alternative to the work reported in Thanga Raj,
Srivastava, and Agarwal (2008b).

NOMENCLATURE

S KVA rating of the motor
Kw winding factor
f supply frequency
/ flux
Tph stator winding turns per phase

828 C. Thanga Raj et al.
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Iph rated full-load current per phase
D stator bore diameter
L stack length
Po output power
p number of poles
dss depth of stator slot
Y pole pitch
S1 number of stator slots
S2 number of rotor slots
Sf stator slot fullness factor
Wt weight of the stator teeth
Wc weight of the stator core
Wr weight of the rotor iron
di stamping material density, kg=m3

dc stator winding material density, kg=m3

dr rotor winding materials density, kg=m3

OD outside diameter of the stator core
Li net core length
ts mean stator tooth width
asr area of rotor slot
Wsw weight of the stator winding
Wrw weight of the rotor winding
ab rotor bar area
Lr length of rotor bar
ae end ring cross section
De end ring diameter
qc specific resistivity of stator winding material
qr specific resistivity of rotor winding material
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differential evolution: A comparative study on numerical benchmark problems. IEEE Transactions
on Evolutionary Computation 10 (6): 646–657.

Cunkas, M., and R. Akkaya. 2006. Design optimization of induction motor by genetic algorithm and
comparison with existing motor. Mathematical and Computational Applications 11 (3): 193–203.

Das, S., A. Abraham, and A. Konar. 2008. Adaptive clustering using improved differential evolution
algorithm. IEEE Transactions on Systems, Man and Cybernetics Part A 38 (1): 218–237.

Faiz, J., and M. B. B. Sharifian. 1995. Optimum design of a three phase squirrel-cage induction motor
based on efficiency maximization. International Journal of Computers and Electrical Engineering 21 (5):
367–373.

Faiz, J., and M. B. B. Sharifian. 2001. Optimal design of three-phase induction motors and their
comparison with a typical industrial motor. Computers and Electrical Engineering 27 (2): 133–144.

Faiz, J., M. Ghaneei, A. Heyhani, and A. B. Proca. 2000. Optimal design of induction motor for electric
vehicle. Electric Machines and Power Systems 28:1177–1194.

Fei, R., E. F. Fuchs, and H. Haung. 1989. Comparison of two optimization techniques as applied to
three-phase induction motor design. IEEE Transactions on Energy Conversion 4 (4): 651–660.

Fiacco, A. V., and G. P. McCormik. 1964a. The sequential unconstrained minimization technique for
nonlinear programming, a primal-dual method. Management Science 10 (2): 360–366.

Fiacco, A. V., and G. P. McCormik. 1964b. Computational algorithm for the sequential unconstrained
minimization technique for nonlinear programming. Management Science 10 (4): 601–617.

Goldberg, D. 1986.Genetic algorithms in search optimization andmachine learning. Reading,MA: Addison -Wesley.
Han, G. J., and S. S. Shapiro. 1967. Statistical models in engineering. UK: John Wiley and Sons.
Idir, K., L. Chang, and H. Dai. 1997. A new global optimization approach for induction motor design.

Proceedings of the IEEE Canadian conference on electrical and computer engineering. 870–873.
Karaboga, D., and S. Okdem. 2004. A simple and global optimization algorithm for engineering prob-

lems: Differential evolution algorithm. Turkish Journal of Electrical. Engineering 12 (1): 53–60.
Kim, J.-W., B.-T. Kim, and B. Kwon II. 2005. Optimal stator slot design of inverter-fed induction motor in

consideration of harmonic losses. IEEE Transactions on Magnetics 41 (5): 2012–2015.
Kim, M.-K., C.-G. Lee, and H.-K. Jung. 1998. multiobjective optimal design of three-phase induction

motor using improved evolution strategy. IEEE Transactions on Magnetics 34 (5): 2980–2983.
Kioskesidis, I., and N. Margaris. 1996. Loss minimization in scalar controlled induction motor drives

with search controller. IEEE Transactions on Power Electronics 11 (2): 213–220.
Koechli, C., B. K. Fussell, S. R. Prina, D. A. James, and Y. Periyard. 2004. Design optimization of induc-

tion motors for aerospace applications. In Proceedings of the IEEE Industry Applications Conference,
2501–2505. Seattle, WA.

Lampinen, J., and I. Zelinka. 2000. On stagnation of the differential evolution algorithm. In Proceedings
of MENDEL 2000, 6th international Mendel conference on soft computing, ed. P. O!ssmera, 76–83. Brno,
Czech Republic: Technical University Press.

Li, C., and A. Rahman. 1990. Three-phase induction motor design optimization using the modified
Hooke-Jeeves method. International Journal of Electrical Machines and Power Systems 18:1–12.

Maljkovic, Z., M. Cettolo, and M. Pavlica. 2001. The Impact of the induction motor on short-circuit
current. IEEE Industry Applications Magazine 7 (4): 11–17.

Murthy, S. S., L. Shridhar, B. Singh, C. S. Jha, and B. P. Singh. 1994. Design of energy efficient motor for
irrigation pumps operating under realistic conditions. Proceedings of IEE Electrical Power Applications
141 (6): 269–274.

Omran, M., A. P. Engelbrecht, and A. Salman. 2005. Differential evolution methods for unsupervised
image classification. In Proceedings of the 7th Congress on Evolutionary Computation 2:966–973.

Omran, M., A. Salman, and A. P. Engelbrecht. 2005. Self-adaptive differential evolution. computational
intelligence and security PT 1, Proceedings Lecture Notes In Artificial Intelligence 3801:192–199.

Padma, S., R. Bhuvaneswari, and S. Subramanian. 2007. Application of soft computing techniques to
induction motor design. COMPEL: The International Journal for Computation and Mathematics in
Electrical and Electronic Engineering 26 (5): 1324–1345.

Palanichamy, C., C. Nadarajan, P. Naveen, N. S. Babu, Dhanalakshmi. 2001. Budjet constrained energy
conservation—An experience with a textile industry. IEEE Transactions on Energy Conversion 16 (4):
340–345.

830 C. Thanga Raj et al.

D
ow

nl
oa

de
d 

by
 [I

nd
ia

n 
In

sti
tu

te
 o

f T
ec

hn
ol

og
y 

Ro
or

ke
e]

 a
t 0

7:
42

 1
5 

O
ct

ob
er

 2
01

2 



Pant, M., R. Thangaraj, and V. P. Singh. 2009. Optimization of mechanical design problems using
improved differential evolution algorithm. International Journal of Recent Trends in Engineering 1
(5): 21–25.

Rahnamayan, S., H. R. Tizhoosh, and M. M. A. Salama. 2008. Opposition-based differential evolution.
IEEE Transactions on Evolutionary Computation 12 (1): 64–79.

Ramarathnam, R., and B. G. Desai. 1971. Optimization of polyphase induction motor design: A
nonlinear programming approach. IEEE Transactions on Power Apparatus and Systems PAS-90 (2):
570–578.

Ramarathnam, R., B. G. Desai, and V. Subba Rao. 1973. A comparative study of minimization techniques
for optimization of induction motor design. IEEE Transactions on Power Apparatus and Systems PAS-92
(5): 1448–1454.

Rosenbrock, H. H. 1960. An automatic method of finding the greatest or least value of function.
Computer Journal 3:175–184.

Schittkowski, K. 1985. NLPQL: A Fortran subprogram solving constrained nonlinear programming
problems. Annals of Operation Research 5:485–500.

Singh, C., and D. Sarkar. 1992. Practical considerations in the optimization of induction motor design.
IEE Proceedings-B Electric Power Applications 139 (4): 365–373.

Singh, B., and B. N. Singh. 1993. Experience in the design optimization of a voltage source inverter-fed
squirrel cage induction motor. Electric Power Systems Research 26:155–61.

Storn, R., and K. Price. 1995. Differential evolution – A simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical Report, International Computer Science Institute,
Berkley.

Thanga Raj, C. 2009. ‘‘Optimal Design and Control of Three-Phase Induction Motor.’’ PhD Thesis,
Indian Institute of Technology Roorkee, India.

Thanga Raj, C., S. P. Srivastava, and P. Agarwal. 2008a. Realization on particle swarm optimized induc-
tion motor via SPEED=PC-IMD. IAENG International Journal of Computer Science 16 (4): 486–492.

Thanga Raj, C., S. P. Srivastava, and P. Agarwal. 2008b. Differential evolution based optimal control of
induction motor serving to textile industry. IAENG International Journal of Computer Science 35 (2):
201–208.

Thangaraj, R., M. Pant, and A. Abraham. 2010. New mutation schemes for differential evolution algor-
ithm and their application to the optimization of directional overcurrent relay settings. Applied
Mathematics and Computation 216 (2): 532–544.

Thangaraj, R., M. Pant, and K. Deep. 2010. Optimal coordination of overcurrent relays using modified
differential evolution algorithms. Engineering Applications of Artificial Intelligence 23 (5): 820–829.

Thangaraj, R., M. Pant, A. Abraham, K. Deep, and V. Snasel. 2010. Differential evolution using a loca-
lized cauchy mutation operator. In IEEE international conference on systems, man and cybernetics,
3710–3716, Istanbul, Turkey.

Wieczorek, J. P., O. Gol, and Z. Michalewicz. 1998. An evolutionary algorithm for the optimal design of
induction motors. IEEE Transactions on Magnetics 34 (6): 3882–3887.

Design Optimization of Textile Spinning Motor 831

D
ow

nl
oa

de
d 

by
 [I

nd
ia

n 
In

sti
tu

te
 o

f T
ec

hn
ol

og
y 

Ro
or

ke
e]

 a
t 0

7:
42

 1
5 

O
ct

ob
er

 2
01

2 


