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Searching Protein 3-D Structures for Optimal
Structure Alignment Using Intelligent
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Abstract—In this paper, we present a novel algorithm for mea-
suring protein similarity based on their 3-D structure (protein ter-
tiary structure). The algorithm used a suffix tree for discovering
common parts of main chains of all proteins appearing in the cur-
rent research collaboratory for structural bioinformatics protein
data bank (PDB). By identifying these common parts, we build
a vector model and use some classical information retrieval (IR)
algorithms based on the vector model to measure the similarity
between proteins—all to all protein similarity. For the calculation
of protein similarity, we use term frequency × inverse document
frequency (tf × idf) term weighing schema and cosine similarity
measure. The goal of this paper is to introduce new protein simi-
larity metric based on suffix trees and IR methods. Whole current
PDB database was used to demonstrate very good time complexity
of the algorithm as well as high precision. We have chosen the struc-
tural classification of proteins (SCOP) database for verification of
the precision of our algorithm because it is maintained primarily
by humans. The next success of this paper would be the ability to
determine SCOP categories of proteins not included in the latest
version of the SCOP database (v. 1.75) with nearly 100% precision.

Index Terms—Information retrieval (IR), proteins, structural
classification of proteins (SCOP), similarity measure, suffix trees,
vector model.

I. INTRODUCTION

ANALYZING 3-D protein structures is a very important
task in molecular biology. Nowadays, the solution for

protein structures often stems from the use of the state-of-the-
art technologies, such as nuclear magnetic resonance (NMR)
spectroscopy techniques or X-ray crystallography, etc., as seen
in the increasing number of protein data bank (PDB) [1] en-
tries (65527 as of May 25, 2010). PDB is a database of 3-D
structural data of large biological molecules, such as proteins
and nucleic acids. It was proved that structurally similar pro-
teins tend to have similar functions even if their amino acid
sequences are not similar to one another. Thus, it is very im-
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Škola Báňská—Technical University of Ostrava, Ostrava 70833, Czech Repub-
lic (e-mail: tomas.novosad@vsb.cz; vaclav.snasel@vsb.cz).

A. Abraham is with the Machine Intelligence Research Labs, Auburn, WA
98071-2259 USA (e-mail: ajith.abraham@ieee.org).

J. Y. Yang is with the Harvard University, Cambridge, MA 02140-0888 USA
(e-mail: dr.yang@jhu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2010.2079939

portant to find proteins with similar structures (even in part)
from the growing database to analyze protein functions. Yang
et al. [2] exploited machine-learning techniques including vari-
ants of self-organizing global ranking, a decision tree, and sup-
port vector machine (SVM) algorithms to predict the tertiary
structure of transmembrane proteins. Hecker et al. [3] devel-
oped a state-of-the-art protein disorder predictor and tested it on
a large protein disorder dataset created from the PDB. The re-
lationship of sensitivity and specificity is also evaluated. Habib
et al. [4] presented a new SVM-based approach to predict the
subcellular locations based on amino acid and amino acid pair
composition. More protein features can be taken into consid-
eration to improve the accuracy significantly. Wang et al. [5]
discussed an empirical approach to specify the localization of
protein binding regions utilizing information including the dis-
tribution pattern of the detected RNA fragments and the se-
quence specificity of RNase digestion.

In this paper, we present a novel method for analyzing
3-D protein structure using suffix trees and classical informa-
tion retrieval (IR) methods and schemes. Several studies were
developed for indexing protein tertiary structure [6], [7]. These
studies are targeted mainly at some kind of selection of the
PDB database. The goal of this paper is to introduce new pro-
tein similarity metric and show the usage of the algorithm on
the whole-current PDB database and calculate the similarity
of each protein in comparison with other proteins. The suffix
tree is a very useful data structure, which can discover com-
mon substructures of proteins within a reasonable time (linear
or logarithmic time), depending on the implementation of the
construction algorithm. In this research, the similarity between
any two proteins is based on common parts (substructures) of
protein main chains instead of, for example, root mean square
deviation (RMSD), which calculates the protein similarity as a
distance between pairs of equivalent atoms (usually Cα ).

When the generalized suffix tree is constructed for all proteins
that appear in the entire PDB database, we use similar methods,
which were previously studied [8]–[12] for measuring the sim-
ilarity of proteins based on their 3-D structure definition. Our
paper arises from the relations of amino acid residues defined
by its torsion angles rather than the relations just between the
alpha carbon atoms. The relations between alpha carbons use
Distance-matrix ALIgnment, for example, [13], when comput-
ing the distance matrix between alpha carbon atoms of a given
protein. In the final stage, we build a vector space model, which
is very suitable for various IR tasks and can be used for future
studies of proteins relations.

1089-7771/$26.00 © 2010 IEEE
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The paper is organized as follows. In Section II, we briefly
describe the proteins, vector space model, and suffix trees.
Section III deals with the description of the conversion of 3-D
protein backbone structures into the data, which can be indexed
by suffix trees. In the following Section IV, we introduce the
characterization of the proposed algorithm for measuring the
similarity of proteins using the vector space model. Finally, in
Section V, the evaluation of the proposed algorithm in compar-
ison with structural classification of proteins (SCOP) database
is provided.

II. BACKGROUND

A. Protein Structure

Proteins are large molecules. In many cases, only a small part
of the structure—an active site—is directly functional, the rest
exists only to create and fix the spatial relationship among the ac-
tive site residues [14]. Chemically, protein molecules are long
polymers typically containing several thousand atoms, com-
posed of a uniform repetitive backbone (or main chain) with a
particular side chain attached to each residue. The amino acid
sequence of a protein records the succession of side chains.

The polypeptide chain folds into a curve in space; the course
of the chain defines a folding pattern. Proteins show a great
variety of folding patterns. Underlying these are a number of
common structural features. These include the recurrence of
explicit structural paradigms—for example, α − helices and
β − sheets and common principles or features such as the dense
packing of the atoms in protein interiors. Folding may be thought
of as a kind of intramolecular condensation or crystallization
[14].

1) Protein Databank: The PDB archive contains informa-
tion about experimentally determined structures of proteins,
nucleic acids, and complex assemblies. As a member of the
wwwPDB, the RCSB PDB curates and annotates PDB data
according to agreed upon standards [1].

2) Torsion Angles: Any plane can be defined by two non-
collinear vectors lying in this plane; taking their cross product
and normalizing yields the normal unit vector to the plane. Thus,
a torsion angle can be defined by four, pairwise noncollinear
vectors.

The backbone torsion angles of proteins are called φ (phi,
involving the backbone atoms C-N-Cα -C), ψ (psi, involving the
backbone atoms N-Cα -C-N), and ω (omega, involving the back-
bone atoms Cα -C-N-Cα ). Thus, φ controls the C–C distance, ψ
controls the N–N distance, and ω controls the Cα –Cα distance.

The planarity of the peptide bond usually restricts ω to be
180◦ (the typical trans case) or 0◦ (the rare cis case). The φ and
ψ torsion angles tend to be from –180◦ to 180◦.

B. Vector Space Model

The vector model [15] of documents was established in the
1970’s. A document in the vector model is represented as a
vector. Each dimension of this vector corresponds to a separate
term appearing in document collection. If a term occurs in the
document, its value in the vector is nonzero.

We use m different terms t1 , . . . , tm for indexing N docu-
ments. Then, each document di is represented by a vector

di = (wi1 , wi2 , . . . , wim )

where wij is the weight of the term tj in the document di . The
weight of the term in the document vector can be determined
in many ways. A common approach uses the so-called term
frequency × inverse document frequency (tf × idf) method, in
which the weight of the term is determined by these factors: how
often the term tj occurs in the document di (the term frequency
tfij ) and how often it occurs in the whole document collection
(the document frequency dfj . Precisely, the weight of the term
tj in the document di is as follows [16]:

wij = tfij × idfj = tfij × log
n

dfj
(1)

where idf stands for the inverse document frequency. This
method assigns high weights to terms that appear frequently
in a small number of documents in the document set.

An index file of the vector model is represented by matrix

D =




w11 w12 . . . w1m

w21 w22 . . . w2m
...

...
. . .

...
wn1 wn2 . . . wN m




where ith row matches ith document, and jth column matches
jth term.

The similarity of two documents in vector model is usually
given by the following formula—cosine similarity measure:

sim(di, dj ) =
∑m

k=1 (wikwjk )√∑m
k=1 (wik )2 ∑m

k=1 (wjk )2
. (2)

For more information, see [15], [17], [18].

C. Suffix Trees

A suffix tree is a data structure that allows efficient string
matching and querying. Suffix trees have been studied and used
extensively, and have been applied to fundamental string prob-
lems, such as finding the longest repeated substring [19], strings
comparisons [20], and text compression [21]. Following this,
we describe the suffix tree data structure—its definition, con-
struction algorithms, and main characteristics.

1) Definitions: The following description of the suffix tree
was taken from Gusfield’s book Algorithms on Strings, Trees,
and Sequences [22]. Suffix trees commonly dealing with strings
as sequence of characters. One major difference is that we treat
documents as sequences of words, not characters. A suffix tree
of a string is simply a compact trie of all the suffixes of this
string [23].

Definition 2.1: A suffix tree T for an m-word string S is a
rooted directed tree with exactly m leaves numbered 1 to m.
Each internal node, other than the root, has at least two children
and each edge is labeled with a nonempty substring of words of
S. No two edges out of a node can have edge labels beginning
with the same word. The key feature of the suffix tree is that for
any leaf i, the concatenation of the edge labels on the path from
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Fig. 1. Simple example of suffix trie.

Fig. 2. Simple example of suffix tree.

the root to leaf i exactly spells out the suffix of S that starts at
position i, that is it spells out S[i . . .m].

In cases, where one suffix of S matches a prefix of another
suffix of S, then no suffix tree obeying the aforementioned
definition is possible, since the path for the first suffix would not
end at a leaf. To avoid this, we assume the last word of S does
not appear anywhere else in the string. This prevents any suffix
from being a prefix to another suffix. To achieve this, we can
add a terminating character, which is not in the language that S
is taken from, to the end of S.

Example of suffix trie of the string “I know you know I know
you#” is shown in Fig. 1. Corresponding suffix tree of the string
“I know you know I know you#” is presented in Fig. 2. There
are seven leaves in this example, marked as rectangles and num-
bered from 1 to 7. The terminating characters are also shown in
Fig. 2.

In a similar manner, a suffix tree of a set of strings, called a
generalized suffix tree [22], is a compact trie of all the suffixes
of all the strings in the set [23].

Definition 2.2: A generalized suffix tree T for a set S of n
strings Sn , each of length mn , is a rooted directed tree with
exactly

∑
mn leaves marked by a two number tuple (k, l),

where k ranges from 1 to n and l ranges from 1 to mk . Each
internal node, other than the root, has at least two children
and each edge is labeled with a nonempty substring of words
of a string in S. No two edges out of a node can have edge
labels beginning with the same word. For any leaf (i, j), the

Fig. 3. Example of the generalized suffix tree.

concatenation of the edge labels on the path from the root to
leaf (i, j) exactly spells out the suffix of Si that starts at position
j, i.e., it spells out Si [j . . . mi ].

Fig. 3 is an example of a generalized suffix tree of the set
of three strings—“Tom knows John #1,”“Paul knows John
too #2,” and “Tom knows Paul too #3” (#1, #2, and #3 are
unique terminating symbols). The internal nodes of the suffix
tree are drawn as circles, and are labeled from a to f for fur-
ther reference. Leaves are drawn as rectangles. The first number
di = (d1 , . . . , dn ) in each rectangle indicates the string from
which that suffix originates—a unique number that identifies
the string. The second number represents the position in that
string di , where the suffix begins. Each string is considered to
have a unique terminating symbol.

2) Suffix Tree Construction Algorithms: The naive, straight-
forward method to build a suffix tree for a string S of length L
takes O(L2) time. The naive method first enters a single edge
for the suffix S[1 . . . L] into the tree. Then, it successively enters
the suffix S[i . . . L] into the growing tree for i increasing from 2
to L. The details of this construction method are not within the
bounds of this paper. Various suffix tree construction algorithms
can be found in [22] (a good book on suffix tree construction
algorithms in general).

Several linear time algorithms for constructing suffix trees
exist [19], [24], [25]. To be precise, these algorithms also exhibit
a time dependency on the size of the vocabulary (or the alphabet
when dealing with character-based trees): they actually have
a time bound of O(L × min(log |V |, log L)), where L is the
length of the string and |V | is the size of the language. These
methods are more difficult to implement then the naive method,
which is sufficiently suitable for our purpose.

We have also made some implementation improvements of
the naive method to achieve better than the O(L2) worst case
time bound. With these improvements, we have achieved con-
stant access time for finding an appropriate child of the root
(this is important because the root node has the same count of
child nodes as it is the size of the alphabet—count of terms in
document collection) and logarithmic time to find an existing
child or to insert a new child node to any other internal nodes
of the tree [11]. Then, we have also improved the generalized
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suffix tree data structure to be suitable for large document col-
lections [11].

III. PREPARING THE DATA

We describe the process of retrieving the data for protein
indexing. We used the whole-current PDB database, which con-
sists of 65 527 known proteins, nucleic acids and complex as-
semblies, as of Tuesday May 25, 2010.

A. Creating Proteins Collection

In the current PDB database, we can find proteins, nucleic
acids, and complex assemblies. Our study is just focused on the
relations between proteins. We have filtered out all nucleic acids
and complex assemblies from the entire PDB database. Then,
we have filtered out proteins, which have incomplete N-Cα-C-O
backbones (e.g., some of the files have C atoms in the protein
backbone missing, etc.).

After this cleaning step, we have obtained a collection of
60 244 files. Each file contains a description of a specific protein
and its 3-D structure and contain only amino acid residues with
complete a N-Cα-C-O atom sequence.

Each retrieved file had at least one main chain (some proteins
have more than one main chain) of at least one model (some
PDB files contained more models of 3-D protein structure). In
cases, when the PDB file contained multiple chains or models,
we took into account all of those (all main chains of all models).

B. Encoding the 3-D Protein Main Chain Structure for Indexing

To be able to index proteins by IR techniques, we need to
encode the 3-D structure of the protein backbone into some
sequence of characters, words, or integers (as in our case). The
area of protein 3-D structure encoding has been widely studied
by authors in previous works, e.g., [6], [26], [27]. Since the
protein backbone is the sequence of the amino acid residues
(in 3-D space), we are able to encode this backbone into the
sequence of integers in the following manner.

For example, let us say the protein backbone consists of four
amino acid residues M V L S (abbreviations for methionine,
valine, leucine, and serine). The relationship between the two
following residues can be described by its torsion angles φ,
ψ, and ω. Since φ and ψ are taking values from the inter-
val 〈−180◦, 180◦〉, we have to do some normalization. From
this interval, we have obtained 37 values (the interval was di-
vided into 36 equal sized subintervals, by 10◦), e.g., −180◦,
−170◦,. . .,0◦, 10◦,. . ., 180◦. Each of these values was labeled
with nonnegative integers as follows: 00, 01,. . ., 36, where 00
stands for −180◦. Now, let us say that φ is −21◦, the closest dis-
crete value is −20◦, which has the label 16, so we have encoded
this torsion with the string “16.” The same holds for ψ. Torsion
angle ω was encoded as the two characters A or B, since the
ω tends to be almost in every case 0◦ or 180◦. After concatena-
tion of these three parts, we get a string, which looks something
like this “A0102,” which means that ω ≈ 180◦, φ ≈ −170◦, and
ψ ≈ −160◦. Concatenation was done in the following manner:
ωφψ.

C. Indexing

The objective of this stage is to prepare the data for indexing
by suffix trees. The suffix tree can index sequences. The resulting
sequence in our case is a sequence of nonnegative integers. For
example, let us say we have a protein with a backbone consisting
of six residues, e.g., M V L S E G with its 3-D properties. The
resulting encoded sequence can be, for example,

{A3202, A2401, A2603, A2401, A2422}.
After obtaining this sequence of five words, we create a dictio-

nary of these words (each unique word receives its own unique
nonnegative integer identifier). The translated sequence appears
as follows:

{0, 1, 2, 1, 3}.
In this way, we encode each main chain of each model con-

tained into one PDB file. This task is done for every protein
included in our filtered PDB collection. Now, we are ready for
indexing proteins using suffix trees.

IV. PROTEIN SIMILARITY ALGORITHM

We describe the algorithm for measuring protein similarity
based on their tertiary structure. A brief description of the algo-
rithm follows.

1) Prepare the data as was discussed in Section III.
2) Insert all encoded main chains of all proteins in the col-

lection into the generalized suffix tree data structure.
3) Find all maximal substructure clusters in the suffix tree.
4) Construct a vector model of all proteins in our collection.
5) Build proteins similarity matrix.
6) For each protein, find top N similar proteins.

A. Inserting All Main Chains Into the Suffix Tree

At this stage of the algorithm, we construct a general-
ized suffix tree of all encoded main chains. As mentioned in
Section III, we obtain the encoded forms of 3-D protein main
chains—sequences of positive numbers. All of these sequences
are inserted into the generalized suffix tree data structure (see
Section II-C).

B. Finding All Maximal Substructure Clusters

To be able to build a vector model of proteins, we have to
find all maximal phrase clusters. Recall the example given in
Section III: the phrases can be, e.g., “Tom knows John #1,”
“knows John #1,” “John #1,” etc. (just imagine that “Tom
knows John #1” is equal to “A3202 A2401 A2603 #1”). The
phrase in our context is an encoded protein main chain or any
of its parts. The document in our context can be seen as a set
of encoded main chains of the protein. Now, we can define a
maximal phrase cluster (the longest common substructure) [8].

Definition 4.1: A phrase cluster is a phrase that is shared by at
least two documents, and the group of documents that contain
the phrase. A maximal phrase cluster is a phrase cluster, whose
phrase cannot be extended by any word in the language without
changing (reducing) the group of documents that contain it.
Maximal phrase clusters are those we are interested in.
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Fig. 4. Example of maximal phrase cluster—node b and c.

Now, we simply traverse the generalized suffix tree and iden-
tify all maximal phrase clusters (i.e., all of the longest common
substructures). Fig. 4 displays the example of maximal phrase
cluster.

C. Building a Vector Model

We describe the procedure for building the matrix represent-
ing the vector model index file (see Section II-B). In a classical
vector space model, the document is represented by the terms
(which are words), respectively, and by the weights of the terms.
In our model, the document is represented not by the terms but
by the common phrases (maximal phrase clusters)!—the term
in our context is a common phrase, i.e., maximal phrase cluster.

In the previous stage of the algorithm, we have identified
all maximal phrase clusters—all the longest common substruc-
tures. From the definition of the phrase cluster, we know that the
phrase cluster is the group of the documents sharing the same
phrase (group of proteins sharing the same substructure). Now,
we can obtain the matrix representing the vector model index
file directly from the generalized suffix tree. Each document
(protein) is represented by the maximal phrase clusters in which
it is contained. For computing the weights of the phrase clusters,
we are using a tf × idf weighting schema, as given by (1).

Simple example: Let us say that we have a phrase cluster con-
taining documents di . These documents share the same phrase
tj . We compute wij values for all documents appearing in a
phrase cluster sharing the phrase tj . This task is done for all
phrase clusters identified by the previous stage of the algorithm.

Now, we have a complete matrix representing the index file
in a vector space model (see Section II-B).

D. Building a Similarity Matrix

In the previous stage of the algorithm, we have constructed
a vector model index file. To build a protein similarity matrix,
we use standard IR techniques for measuring the similarity in a
vector space model. As mentioned in Section II-B, we have used
cosine similarity, which looks quite suitable for our purpose. The
similarity matrix is given by

Documents (proteins) similarity matrix

S =




1 sim(d1 , d2) . . . sim(d1 , dn )
sim(d2 , d1) 1 . . . sim(d2 , dn )

...
...

. . .
...

sim(dn , d1) sim(dn , d2) . . . 1




where the ith row matches the ith document (protein, respec-
tively), and the jth column matches the jth document (protein).
The similarity matrix is diagonally symmetrical.

E. Finding Similar Proteins

This step is quite simple. When we have computed the sim-
ilarity matrix S, we simply sort the documents (proteins) on
each row, according to their similarity scores. The higher the
score, the more similar the two proteins are. This is done for
each protein in our protein collection.

V. EVALUATION AND TESTING

A. Structural Classification of Proteins

In order to evaluate the accuracy and effectiveness of our
algorithm, we applied it to well-known SCOP [28] database,
which is maintained by humans in contrast with, for example,
CATH database, which uses automated methods. We used the
current version of the SCOP database (v. 1.75 released on June
2009), which contains 38 221 of classified proteins. We have
chosen SCOP, because we wanted to evaluate our algorithm on
manually classified proteins, rather than on automated ones.

There is also another structural classification system called
CATH. CATH is an hierarchical classification of protein-domain
structures, which clusters proteins at four major levels: class (C),
architecture (A), topology (T), and homologous superfamily
(H). The boundaries and assignments for each protein domain
are determined using a combination of automated and manual
procedures, which include computational techniques, empirical
and statistical evidence, literature review, and expert analysis
[29]. CATH uses the DALI algorithm to find similarities between
proteins.

B. Evaluation

For each protein P in our collection C, we did the following.
1) For protein P , determine the class, folding pattern group,

superfamily, family, and domain [28].
2) Based on the similarity matrix, find N most similar pro-

teins PS according to their score of similarity to protein
P .

3) For each protein PS , determine the class, folding pattern
group, superfamily, family, and domain.

4) For all proteins in our collection, compute the percentage
of correctly classified proteins PS to protein P .

We did this for each protein in our collection and computed
the overall percentage accuracy over our filtered collection. We
did not classify approximately 25 000 proteins, since they did
not appear in the SCOP database. The highest possible score
for two proteins is 1.0, which means the two proteins are com-
pletely similar. The score of 0.0 means the two proteins have
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TABLE I
TEN THE MOST SIMILAR PROTEINS TO A PROTEIN LABELED 2ENG AND THE

SCOP CLASSIFICATIONS

Fig. 5. (2ENG) Endoglucanase V.

no structural similarity discovered by our algorithm. The score
can also be seen as percentage of similarity if it is multiplied by
100.

In more precise terms: if we have protein P , based on the
calculated similarity matrix, we sort all other proteins PS in
our protein collection in descending order according to their
scores. The greater the score the more similar the protein is
to protein P . We take only the top N highest scoring proteins
(the top N most similar proteins to the given protein). We set
N to the value of ten. After this, we obtain a list such that the
similar proteins for every protein in our collection, we have
determined the SCOP classification of those proteins. Table I
depicts the algorithm result for the protein marked with the la-
bel 2ENG (endoglucanase V). The class with id = 48 724 means
all beta proteins, the fold with id = 50 684 means double psi
beta-barrel, the superfamily with id = 50 685 means Barwin-
like endoglucanases, the family with id = 46 463 means Eng
V-like, the fomain with id = 50 687 means endoglucanase V
(Eng V), and finally, the species with id = 50 688 means Humi-
cola insolens.

Note that, e.g., class id = 0 means that the protein is not
classified by the SCOP database.

Table I displays the ten most similar proteins to protein labeled
2ENG and it is generated for every protein in our filtered protein

Fig. 6. (1st—3ENG) Structure of endoglucanase V cellobiose complex.

Fig. 7. (4th—1l8f) Structure of 20K-endoglucanase from Melanocarpus
albomyces at 1.8A.

Fig. 8. (8th—1aun) Pathogenesis-related protein 5-D from Nicotiana
tabacum.

collection. Fig. 5 shows the picture of secondary structure of
protein marked 2ENG in PDB database. Figs. 6–8 represent
the three structurally similar proteins to protein labeled 2ENG,
corresponding to Table I. Images were generated using PyMOL
software.

C. Experiments

Here, we present the results with the proposed method of
measuring protein similarity based on their tertiary structure
and in the comparison with the SCOP database. All experiments
were run on computer with 32 GB of RAM and 4 AMD 64-bit
Opteron dual core 1.8 GHz CPUs. The whole PDB database
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TABLE II
CLASS CLASSIFICATION PERCENTAGE ACCURACY

Fig. 9. Protein class membership percentage accuracy.

indexed by our version of the suffix tree construction algorithm,
which takes about 3.5 GB of RAM and about 40 min of time
(see Section IV-A). The calculation of the similarity matrix in
Section IV-D takes about 10 h of time and 10 GB of RAM,
since the similarity matrix is computed in memory. Total time
needed to compute all pairwise similarities is about 12 h for the
whole current PDB database. All calculations were done on one
1.8 GHz CPU using only one thread. All parts of the application
is written in C++ programming language.

First, we have computed a percentage accuracy of all proteins
in the entire SCOP database (35 908 proteins classified), next
we have computed the accuracy only for proteins for which
our algorithm found proteins with at least some given score of
similarity (e.g., we have protein A and for this protein exists at
least one protein, which has a score of similarity with protein
A of at least 0.14—we cutoff all proteins, which do not satisfy
this assumption)—this is some kind of threshold or cutoff.

The description of the following Table II is as follows.
Figs. 9–13 show these results in a graph representation. Col-
umn rank means the ordering of similar proteins (e.g., Rank 1
means the most similar protein to a given protein, and Rank
10 means the tenth most similar protein to a given protein).

Fig. 10. Protein folding pattern membership percentage accuracy.

Fig. 11. Protein superfamily membership percentage accuracy.

Fig. 12. Protein family membership percentage accuracy.

Column sim stands for minimal similarity (i.e., sim 0.0 means
that there exists at least one protein to given protein, which has
score of similarity at least 0.0). Line count means for how many
proteins with this cutoff (minimal similarity) were found in our
collection.

In more precise terms, e.g., line 1 of the Table II (not consid-
ering the header of the table) means that all the proteins placed
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Fig. 13. Protein domain membership percentage accuracy.

TABLE III
PROTEINS UNCLASSIFIED BY USING SCOP FOUND BY OUR ALGORITHM AND

THEIR MPA TO A GIVEN CLASS, FOLD, SUPERFAMILY, FAMILY, AND DOMAIN

in the first place (i.e., the most similar protein to given a protein,
see the Table I) have a 93.02% accuracy in the classification
of class with no cutoff, a 96.44% accuracy with the cutoff of
proteins scoring less than 0.14, etc.

We have also identified class, fold, superfamily, family, and
domain of proteins, which are not classified by the SCOP with
almost 100% membership accuracy. Table III shows these re-
sults. Let us examine line 5 of this table. Column sim = 0.56
means that we have chosen only proteins, which have at least one
structurally similar protein with a score of similarity of at least
0.56. Column mpaC means membership percentage accuracy to
the scop protein class (same for fold—mpaF o , superfamily—
mpaSF , family—mpaF a , and domain—mpaD ). Column UPC—
unclassified proteins count is the count of proteins, which are
not classified by SCOP and which appear in the first place in the
list of similar proteins to a given protein. Column TPC—total
proteins count is the total count of proteins, which have at least
one structurally similar protein with a score of similarity of at
least 0.56. In summary, this means that we have found 1356
unclassified proteins by using SCOP out of 22 374, such that
proteins have a 99.04% class membership accuracy, a 98.81%
fold membership accuracy, a 98.80% superfamily membership
accuracy, etc.

VI. CONCLUSION

In this paper, we have presented a novel method for mea-
suring protein similarity using suffix tree data structure and IR
techniques. The method is fully automated and in comparison
with the human maintained database SCOP, our approach has

achieved very good results. We have also demonstrated that we
can use common IR models and methods for measuring simi-
larity of proteins. With these methods, we have achieved very
good results. The method can compute all pairwise similarities
in about 12 h on one 1.8 GHz CPU.

We can also identify classes, folds, superfamilies, families,
and domains of many unclassified proteins contained in the cur-
rent SCOP database with almost 100% membership accuracy.
By the simple observation that when the unclassified protein is
most similar to the protein, which is classified and have at least
some given score, then in 99% of the cases, the unclassified
protein has a similar SCOP category as the known protein.

We now have a similarity matrix computed for all the proteins
included in the current PDB database. In our future work, we
wish to use the similarity matrix for other IR tasks, such as
clustering, application of statistical, or graph methods. We will
also investigate the protein relations based on these methods for
using our algorithm.
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