
 1

An Enhanced Fuzzy-Genetic Algorithm to Solve Satisfiability

Problems

José Francisco Saray Villamizar, Youakim Badr, Ajith Abraham
Institut National des Sciences Appliquées

INSA-Lyon, F-69621, France

{jose.saray, youakim.badr, ajith.abraham}@insa-lyon.fr

Abstract

The satisfiability is a decision problem that belongs to

NP-complete class and has significant applications in

various areas of computer science. Several works have

proposed high-performance algorithms and solvers to

explore the space of variables and look for satisfying

assignments. Pedrycz, Succi and Shai [1] have studied

a fuzzy-genetic approach which demonstrates that a

formula of variables can be satisfiable by assigning

Boolean variables to partial true values between 0 and

1. In this paper we improve this approach by proposing

an improved fuzzy-genetic algorithm to avoid

undesired convergence of variables to 0.5. The

algorithm includes a repairing function that eliminates

the recursion and maintains a reasonable computational

convergence and adaptable population generation.

Implementation and experimental results demonstrate

the enhancement of solving satisfiability problems.

Keywords: Satisfiability, Genetic Algorithms, fuzzy

logic, NP-Completeness, Evolutionary Computation

1. Introduction

The satisfiability is a decision problem to determine

whether a Boolean formula only expressed in terms of

AND, OR, NOT, variables, and parentheses can be

entirely evaluate to true by assigning its variables to

false and true values. Equally important is to

understand that the function or the Boolean formula

and its variables are all binary-valued. The question of

determining whether a possible variable assignment

exists is frequently referred to as a satisfiability

problem [2]. The satisfiability problem (SAT) is of

central importance in various areas of computer

science including hardware design, computer-aided

design, artificial intelligence, algorithms, electronic

design, software verification, operations research and

automation [1].

At first seen, the problem is an inoffensive. As the

number of Boolean variables, N, becomes bigger, the

search space grows in an exponential way to include 2
N

possible combinations of variables which make the

investigation to enumerate and find a solution a time-

consuming [1]. Thus, any deterministic program fails

to find a solution in a plausible time. The Cook–Levin

theorem [3] proves that the Boolean satisfiability

belongs to NP-complete class problems. It is the only

problem in this class, because if any other problem

exists, the cooke’s theorem demonstrates that the

problem can be reduced by a bijective function to a

satisfiability problem. This is why SAT deserves a

special interest in NP completness theorem: any NP-

Complete problem can be solved by transforming it to

a SAT instance [4].

Several works have studied the satisfiability

problem and proposed high-performance heuristic

algorithms and solvers to explore the space of variable

assignments and look for satisfying assignments [5] [6]

[7]. In particular, evolutionary and Genetic algorithms

[8] have recently received a potential attention to find

exact or approximate solutions to optimization and

search problems. They reveal to be useful in solving

satisfiability problems [13]. Pedrycz, Succi and Shai

propose in their work [1] approach based on genetic

algorithm and fuzzy logic theory to transform the

binary domain of {0, 1} of Boolean variables to a

continuous domain. After a random generating of

fuzzy assignations they apply fuzzy logical operations

to define the fitness function and solve a satisfiable

problem of 200 variables. The major problem of this

approach is the convergence of variable values to 0.5

in the case of more than 200 variables. It becomes

difficult to safely decide whether the variable value

should be truncated to 0 or 1. To this end, they develop

recursive architecture to successfully avoid

convergence to 0.5 and solve function of up to 1200

variables. The recursive-based version of the genetic

 2

SAT solver still has some drawbacks because of its

quadratic complexity and computational time

consuming due crossover, mutation and selection

operation.

In this paper, we improve the fuzzy genetic

algorithm by introducing heuristic algorithm and

repairing function which eliminate the recursion

process and enhances drastically the computation time.

The experimental results demonstrate the advantage of

our approach with comparison to Pedrycz et al.

algorithm.

The paper is organized as follows. In section 2 we

present preliminary introduction to genetic approaches.

The application of genetic algorithms and fuzzy theory

are illustrated to formulate a satisfiability problem in

the section 3. We introduce the repairing function and

the pseudo code of our fuzzy-based genetic algorithm

in section 4. In the section 5 we discuss the

experimental results and show the enhancement of the

algorithm. Finally we conclude the work and discuss

future directives.

2. Overview of Genetic Algorithms

Genetic algorithms are a particular category of

evolutionary algorithms which aim at finding exact or

approximate solutions to optimization problems, they

are encoded in binary strings and they use mutation

and crossover for modifying the population through

generations. In mathematics, the optimization problem

seeks to minimize or maximize a function by choosing

appropriate values for its variables. Genetic algorithms

are inspired by biological evolution and based on

genetic operations on genes, such as the mutation

which changes the current value of a gene, and

crossover that makes a new chromosome inheriting

characteristics from the two parent chromosomes.

These operations are applied together with Darwin’s

evolution theory, that states that individuals more fitted

to the environment will survive, and will reproduce

themselves maximizing their genetic code in the

offspring, that will born with similar characteristics

than their parents and by consequence they will be

equally or better fitted to the same environment.

In the context of the evolution theory, individuals

designate potential solutions to the optimized

functions. Each solution is evaluated to check whether

it minimizes or maximizes these functions in optimal

way. Best fitted individuals are then selected [9] to

generate new population through making crossover

between individuals and applying mutation to the

offspring to avoid premature convergence [8].

The genetic paradigm is a flexible approach

enabling, for the same problem, different individual

representations and algorithm implementations to

select individuals and perform mutation. However, the

appropriate representation of potential solutions is

crucial to ensure that the mutation of any pair of

individual (i.e. chromosome) will result in new valid

and meaningful individual for the problem.

Conversely, the choice of the fitness function that

discriminates and converts back to Boolean space

should be carefully studied [9].

3. Solving SAT Problems with Genetic

Algorithms

As for the satisfiability problem, the potential

solutions are commonly modeled in terms of binary

strings each of which has a sequence of 0 or 1 [4], [6],

[7]. However, the challenge becomes the selection of a

suitable fitness function [14]. In the case that the

function is the Boolean expression itself, its evaluation

takes the truth value of 0 or 1 depending on all variable

assignments. Boolean function does not help to provide

appropriate fitness differentiation between individuals

in our genetic optimization. A suitable solution could

be a fitness function that makes the problem

continuous so that each individual in the search space

could come with a different value. The Fuzzy sets

support the transformation from boolean space to

continuous space. However, some other approaches are

commented here:

De Jong and Spears [10] proposed AVERAGE

function to replace AND operator and MAXIMUM

function to replace OR operator, define the fitness

function of the following expression as follows:

F(x1, x2) = x1 AND (x1 OR ¬x2)

The fitness function will be:

F(x) = AVERAGE (x1, MAXIMUM (x1, x2))

However, choosing such a function has several

drawbacks because it does not preserve some of the

important boolean laws:

Associativity law:
(x1 AND x2) AND x3 ≡ x1 AND (x2 AND x3)

Whereas
AVERAGE (AVERAGE (x1, x2), x3) ≠

AVERAGE(x1, AVERAGE (x2, x3))

Morgan law:

x1 OR x2 ≡ NOT ((NOT x1) AND ((NOT x2))

 3

whereas

MAXIMUM(x1, x2) ≠ 1 – ((1 – x1) + (1 – x2))/2

Although the drawbacks of this fitness function, the

algorithm in [10] succeeds to find a solution after 500

generations. The challenge of finding a suitable fitness

function should solve the problem in a more efficient

way. Alternative approaches can be found in the Fuzzy

theory which considers a continuous logical domain

instead of a binary domain. AND and OR operations

are commonly replaced by a triangular norm such as

MIN and MAX functions. In general, any mathematical

operator that satisfies associativity, monotonicity and

commutativity can be used for this purpose. The work

in [1] proposed arithmetic addition and product, to

overtake the fitness function drawbacks The approach

assigns partial true values between 0 and 1 to different

boolean variables composing the potential solutions

and applying fitness function by using the arithmetic

product norm. Upon completion of the algorithm

execution the fitness fuzzy vector is converted to a

binary vector by applying the following biasing

function variable:

f(xi) = 0 if 0 ≤ xi < 0.5

f(xi) = 1 if 0.5 ≤ xi ≤ 1

The disadvantage of using such a biasing function

arises when the variable xi is close to 0.5. The decision

to convert xi to 0 or 1 becomes non-deterministic.

The work in [1] demonstrates that the algorithm

correctly solves Boolean expressions up to 200

variables with no undesired convergence to 0.5 after 40

generations and less than 2 hours of computation. After

200 generations, variables begin to inevitably converge

to 0.5. The algorithm is then extended by transforming

the genetic algorithm into a recursive function which

succeeds to solve boolean expressions up to 1200

variables.

The major lack of this approach is due to the time-

consuming and computational complexity. The fitness

function should be applied to each potential solution,

followed by a sequence of operations such as selection,

crossover and finally mutation of chromosomes. The

implementation of the recursive approach requires

repeating several times computations that are already

done. An interesting way to improve this approach

consists of solving the undesired convergence to 0.5 by

proposing an alternative solution to the recursion

algorithm.

 In the next section we introduce the repairing function

to avoid the convergence to 0.5 and consequently

reduce the computation complexity.

4. Enhanced Algorithm Avoiding 0.5

Convergence

The enhanced algorithm relies on the fact that AND

operator is associative which means that Boolean

formula can be rewritten in terms of AND operators

and Boolean expressions. A potential solution for an

AND operand implies the solution of the whole

formula. This powerful property will enables the

decomposition of a formula of N boolean variables to

into P chunks (i.e. sub-expression) of M variables

where M < N. The decomposition allows the genetic

algorithm that does not find a solution for a given M-

variable boolean expression to reapply the algorithm

just for this M-variable expressions and not for the

entire expression. In addition, the enhanced algorithm

is extended with a repairing function to avoid 0.5

convergences. A repair function in genetic algorithms

attempts to correct an individual (i.e. chromosomes)

according to a particular problem to solve. For

example, in [11] repairing functions are introduced to

deal with scheduling constraints in the steel industry

whereas in [2] they are introduced to deal with the TSP

problems. In our context, the repairing function helps

individuals to not converge to undesired value. The

function guarantees that all variable assignments stay

away from the value of 0.5.

The pseudo code for the enhanced genetic algorithm is

illustrated below.

N:= NUMBER_OF_BOOLEAN_VARIABLES;

M:= CHUNK_LENGTH;

minterm := N_VARIABLE_MINTERM_TO_SATISFY;

number_of_chunks := N / M

remainder := N % M

p := randomly_initial_population(40, M);

indexini := 1;

indexfi := indexini + M;

index:= 1;

solution:=””

sol:=””;

repeat

repeat

 sol:= evolve(p,extrait(minterm,indexini,indexfi));

until sol = = extrait(minterm,indexini,indexfi) ;

solution:=solution+sol ;

indexini := indexini + M;

indexfi := indexfi + M;

index++;

until index ≤ number_of_times

indexfi := indexini + remainder;

repeat

 sol:= evolve(p,extrait(minterm,indexini,indexfi));

until sol = = extrait(minterm,indexini,indexfi) ;

solution:=sol+evolve(p, extrait(minterm,indexini,indexfi))

 4

The evolve function performs all necessary

operations to transform generations based on the

fitness function. The function biasedSelection

randomly selects couple of individuals with highest

fitness value whereas the function makeCrossover

performs two chromosome’s crossover. Furthermore,

let m be the value that variables must not converge to

and σ the distance from m. An algorithm for generating

a random population is given by:

Since the individuals in the initial population are

distant from the undesired convergence value, the

fuzzy-genetic algorithm can be applied. The algorithm

implements crossover between variables which makes

possible generate offspring convergence to 0.5. The

repairing function, f(x), helps to avoid the

convergence. The function value of f(xi) substitutes the

value of xi in an offspring chromosome where

xi ∈ [m – σ, m + σ]. The repairing function defined as:

f(xi) = m + σ if m ≤ xi ≤ m + σ

f(xi) = m - σ if m - σ ≤ x < m

The repairing function improves the algorithm in

[1]. In fact, the problem of 0.5 convergence is avoided

because binary patterns that yield to value of 0.5 is

completely extincted. In addition, the divide and

conquer approach (i.e associative property) that allows

the representation of the Boolean formula in terms of

expressions and AND operators significantly reduces

the number of generations and individuals implied in

each computation.

5. Experimental Results

We have developed a series of detailed experiments

to demonstrate the feasibility of our algorithm and its

repairing function. The algorithm was implemented

using Java language and tested on a Pentium 4, 1.73

GHz and 1 GBytes RAM. All algorithm parameter

values are selected by a trial and error strategy, until

we got a performance in time and memory that

reasonably improves the one proposed in [1].

Parameter Value

Mutation rate 0.01

Number of chromosomes 40

Number of generations 40

Number of variables in chunk 14

Number of bits 32

Number of clones 6

σ - value 0.1

Crossover probability 0.85
Table 1. Parameter values

Same as the algorithm in [1], one single randomly

generated minterm is chosen as Boolean expression to

find the solution and reduce the computational time.

Without loss of generality we can easily extend the

solution to n minterms. As for the experimental results

we implement the algorithm to solve a given minterm

of N variables divided to P chunk-minterms each of

which containing 14 variables. In addition, individuals

are represented by vectors of decimal values between 0

and 1, each decimal component of the vector is

encoded by 32 bit binary representation of the product

between the decimal number and 2
32

. A population

consists of 40 individuals. An average of 40

generations was necessary to the algorithm to find a

randomly_initial_population(POPULATION_SIZE: int,

CHUNK_SIZE:int)

m:= 0.5;

σ:=0.1;

flag:=continue;

population := Array[0 ... POPULATION_SIZE];

chromosome := Array [0 ... CHUNK_SIZE];

n := POPULATION_SIZE;

individual_index := 0

repeat

 gene_index:= 1

 repeat

 random_number = random (0, 1)

 if (m – σ ≤ random_number ≤ m + σ)

 flag := continue

 end if

 else

 flag:= stop

 until flag == stop

 chromosome[gene_index] := random_number:

 gene_index:= gene_index + 1;

 until gene_index ≤ GENE_NUMBER

 population[individual_index] := chromosome;

 individual_index := individual_index + 1;

until individual_index < n

evolve(population:array[0...NUMBER_CHROMOSOMES],fitnessFunction:S

tring): String)

return_chromosome := Array [0 ...fitnessFunction.size]

NUMBER_OF_GENERATIONS := 40;

ind_of_generations := 1;

ind_of crossover := 1;

repeat

 repeat

 chromo1 := biasedSelection (population);

 chromo2 := biasedSelection (population);

 makeCrossover(population, chromo1, chromo2);

 ind_of_crossover:= ind_of_crossover + 1;

 until ind_of_crossover ≤ NUMBER_CHROMOSOMES/2

applyMutation(population);

 sortByFitness(fitnessFunction)

 return_chromosome:= population[NUMBER_CHROMOSOMES]

 ind_of_generations:=ind_of_generations + 1;

until ind_of_generations≤NUMBER_OF_GENERATIONS;

return biasFunction(return_chromosome);

 5

appropriate solution to a chunk. The fitness function is

calculated from the product norm of the fuzzy

chromosome genes (1-xi) or xi depending whether the

boolean variable of the index i in the minterm is

complemented or not. We adopt a ceiling function to

selection parents similar to the function proposed in

[1]. The choice of the ceiling function favorites the

individual selection as best fitness individuals. Each

individual has a probability of crossover of 0.85. The

crossover is made component by component, rather

than once per pair of chromosomes. A mutation rate of

0.01 and six fittest individuals are cloned and included

in the next generation. A σ value of 0.1 is used to

guarantee that genes will always have a distance of 0.1

away from 0.5. A summary of these parameters is

shown in table 1. Figures 1 and 2 illustrate the

behavior of the fittest individual per generation and the

average fitness for an expression of 20 variables and σ

value of 0.1. As we can observe, the repairing function

demonstrates that after 45 generations each gene is far

enough from 0.5 where the fitness and average values

begin to quickly increase.

Figure 1. Best fitness individual per generation

Figure 3 shows a snapshot of the best fittest

chromosome through generations. In contrast with the

snapshots provided in [1], we observe that no Boolean

variable is converging to 0.5. We can also check the

result of the repair function. Some variables fluctuate

around 0.4 and 0.6 values in the 20 generation and

afterward they immediately begin to converge and get

the desired solution after an average of 60 generation.

When the number of variables reaches the 200

threshold, some of variable values inevitably converge

to 0.5 in [1] whereas applying the repairing function

and the decomposition of N-variable functions into P

groups of M variables, with M < N, makes possible to

avoid the undesired convergence.

Figure 2. Average Fitness per generation

Figure 3. Snapshots of the fittest chromosome through

generations

In addition, the time performance of the fuzzy

genetic algorithm is improved since individual and

generation numbers remain constant even if the

number of variables increases (see Figure 4.). In

contrast with the algorithm in [1], size and number of

individuals and generations increase when the number

of variables increases. Thus, the complexity of our

algorithm is linear (correlation_coef(x,y) =

0.98456001) in contrast with the algorithm in [1]

where the complexity is quadratic.

 6

Figure 4. Correlation between the number of variables

and algorithm execution time

The algorithm in [1] took 3 hours to solve 800

variable minterms, while our approach takes one hour

and a half to solve 2400 variable minterms. Table 2

illustrates the significant improvement of the algorithm

in term of computation and execution time.

Number of

variables

Population

size

Number of

generations

Number of

repetitions

Total

time

800 40 40 57 00:31:32

500 40 40 35 00:14:36

300 40 40 21 00:09:12

100 40 40 7 00:03:15

Table 2. Algorithm time to solve variables assignments

6. Conclusion

The satisfiability is a decision problem that belongs

to NP-complete class problems. It deserves a special

interest since any NP-Complete problem can be solved

by transforming it to a satisfiability instance. Genetic

algorithms have recently received a potential attention

to explore the space of variable assignments find

solutions to satisfiability problems. In this paper we

studied the Pedrycz, Succi and Shai work [1] which is

based on genetic algorithm and fuzzy logic theory. We

improved the fuzzy genetic approach by applying a

divide and conquer strategy to reformulate the Boolean

expression. We introduced a repairing function to

eliminate the recursion process and enhances

drastically the computation time. The experimental

results demonstrate advantages of our algorithm in

term of complexity, convergence and computational

time. The future work includes the recursive

application of the divide and conquers strategy in order

to study the impact on the computational complexity.

7. References

[1] W. Pedrycz, G. Succi and O. Shai. Genetic – Fuzzy

Approach to the Boolean satisfiability Problem. IEEE

Transactions of evolutionary computation, Vol 6. No 5,

October 2002.

[2] M.R.Garey and D.S. Jhonson, Computers and

Intractability, a guide to the theory of NP Completeness. San

Francisco CA: Freeman 1979

[3] S.A. Cook. The complexity of Theorem Proving

Procedures. University of Toronto.1971

[4] J. Gotlieb, E. Marchiori and C. Rossi, Evolutionary

Algorithms for the Satisfiability Problem. Evolutionary

Computation, MIT press, vol.10, Nr.1, pp. 35-50, 2002.

[5] The SATisfiability problem website,
http://www.satlive.org/ [Last visited December 2008]

[6] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, in

Satisfiability Problem: Theory and Applications, DIMACS

Series in Discrete Mathematics and Theoretical Computer

Science, American Mathematical Society, 1997

[7] S.A. Cook and D.G. Mitchell, Satisfiability Problem:

Theory and Applications, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, American

Mathematical Society, 1997.

[8] D. Goldberg. Genetic Algorithms in Search Optimization

and Machine Learning. Reading MA Addison Wesley, 1989.

[9] Z. Michalewicz, Genetic Algorithms +Data Structures =

Evolution Programs. Springer Verlag. Third edition 1998

[10] K A Jong, W M Spears, Using Genetic Algorithms to

solve NP-Complete problems. George Mason University,

1989

[11] J Dorn and M Guirch. Genetic Operators Based On

Constraint Repair. Proceedings of the ECAI'94 Workshop on

Applied Genetic and other Evolutionary Algorithms, Vienna

University of Technology. 1994

[12] M.R. Bonyadi, M.R. Azghadi and H.S. Hosseini.

Solving traveling salesman problem using combinatorial

evolutionary algorithm. 4th IFIP Conference on Artificial

Intelligence Applications & Innovations, Athens, Greece, 17-

19 September, 2007

[13] W. Pedrycz, Computational Intelligence: An

Introduction (tutorial), IASTED Int. Conf. on Applied

Modelling and Simulation, Banff, July 27-August 1, 1997

[14] K. A. De Jong and W. M. Spears, “Using genetic

algorithms to solve NP-complete problems,” in Proc. 3rd Int.

Conf. Genetic Algorithms. San Mateo, CA: Morgan

Kaufmann, 1989, pp. 124–132.

