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Abstract 
 

The satisfiability is a decision problem that belongs to 

NP-complete class and has significant applications in 

various areas of computer science. Several works have 

proposed high-performance algorithms and solvers to 

explore the space of variables and look for satisfying 

assignments. Pedrycz, Succi and Shai [1] have studied 

a fuzzy-genetic approach which demonstrates that a 

formula of variables can be satisfiable by assigning 

Boolean variables to partial true values between 0 and 

1. In this paper we improve this approach by proposing 

an improved fuzzy-genetic algorithm to avoid 

undesired convergence of variables to 0.5. The 

algorithm includes a repairing function that eliminates 

the recursion and maintains a reasonable computational 

convergence and adaptable population generation. 

Implementation and experimental results demonstrate 

the enhancement of solving satisfiability problems.  

 

Keywords: Satisfiability, Genetic Algorithms, fuzzy 

logic, NP-Completeness, Evolutionary Computation 

 

1. Introduction 
 

The satisfiability is a decision problem to determine 

whether a Boolean formula only expressed in terms of 

AND, OR, NOT, variables, and parentheses can be 

entirely evaluate to true by assigning its variables to 

false and true values. Equally important is to 

understand that the function or the Boolean formula 

and its variables are all binary-valued. The question of 

determining whether a possible variable assignment 

exists is frequently referred to as a satisfiability 

problem [2]. The satisfiability problem (SAT) is of 

central importance in various areas of computer 

science including hardware design, computer-aided 

design, artificial intelligence, algorithms, electronic 

design, software verification, operations research and 

automation [1].  

 
At first seen, the problem is an inoffensive. As the 

number of Boolean variables, N, becomes bigger, the 

search space grows in an exponential way to include 2
N
 

possible combinations of variables which make the 

investigation to enumerate and find a solution a time-

consuming [1]. Thus, any deterministic program fails 

to find a solution in a plausible time. The Cook–Levin 

theorem [3] proves that the Boolean satisfiability 

belongs to NP-complete class problems. It is the only 

problem in this class, because if any other problem 

exists, the cooke’s theorem demonstrates that the 

problem can be reduced by a bijective function to a 

satisfiability problem. This is why SAT deserves a 

special interest in NP completness theorem: any NP-

Complete problem can be solved by transforming it to 

a SAT instance [4]. 

 

Several works have studied the satisfiability 

problem and proposed high-performance heuristic 

algorithms and solvers to explore the space of variable 

assignments and look for satisfying assignments [5] [6] 

[7]. In particular, evolutionary and Genetic algorithms 

[8] have recently received a potential attention to find 

exact or approximate solutions to optimization and 

search problems. They reveal to be useful in solving 

satisfiability problems [13]. Pedrycz, Succi and Shai 

propose in their work [1] approach based on genetic 

algorithm and fuzzy logic theory to transform the 

binary domain of {0, 1} of Boolean variables to a 

continuous domain. After a random generating of 

fuzzy assignations they apply fuzzy logical operations 

to define the fitness function and solve a satisfiable 

problem of 200 variables. The major problem of this 

approach is the convergence of variable values to 0.5 

in the case of more than 200 variables. It becomes 

difficult to safely decide whether the variable value 

should be truncated to 0 or 1. To this end, they develop 

recursive architecture to successfully avoid 

convergence to 0.5 and solve function of up to 1200 

variables. The recursive-based version of the genetic 
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SAT solver still has some drawbacks because of its 

quadratic complexity and computational time 

consuming due crossover, mutation and selection 

operation.  

In this paper, we improve the fuzzy genetic 

algorithm by introducing heuristic algorithm and 

repairing function which eliminate the recursion 

process and enhances drastically the computation time. 

The experimental results demonstrate the advantage of 

our approach with comparison to Pedrycz et al. 

algorithm.  

 

The paper is organized as follows. In section 2 we 

present preliminary introduction to genetic approaches.  

The application of genetic algorithms and fuzzy theory 

are illustrated to formulate a satisfiability problem in 

the section 3. We introduce the repairing function and 

the pseudo code of our fuzzy-based genetic algorithm 

in section 4. In the section 5 we discuss the 

experimental results and show the enhancement of the 

algorithm. Finally we conclude the work and discuss 

future directives. 

 

2. Overview of Genetic Algorithms 
 

Genetic algorithms are a particular category of 

evolutionary algorithms which aim at finding exact or 

approximate solutions to optimization problems, they 

are encoded in binary strings and they use mutation 

and crossover for modifying the population through 

generations. In mathematics, the optimization problem 

seeks to minimize or maximize a function by choosing 

appropriate values for its variables. Genetic algorithms 

are inspired by biological evolution and based on 

genetic operations on genes, such as the mutation 

which changes the current value of a gene, and 

crossover that makes a new chromosome inheriting 

characteristics from the two parent chromosomes. 

These operations are applied together with Darwin’s 

evolution theory, that states that individuals more fitted 

to the environment will survive, and will reproduce 

themselves maximizing their genetic code in the 

offspring, that will born with similar characteristics 

than their parents and by consequence they will be 

equally or better fitted to the same environment. 

 

In the context of the evolution theory, individuals 

designate potential solutions to the optimized 

functions. Each solution is evaluated to check whether 

it minimizes or maximizes these functions in optimal 

way. Best fitted individuals are then selected [9] to 

generate new population through making crossover 

between individuals and applying mutation to the 

offspring to avoid premature convergence [8].  

The genetic paradigm is a flexible approach 

enabling, for the same problem, different individual 

representations and algorithm implementations to 

select individuals and perform mutation. However, the 

appropriate representation of potential solutions is 

crucial to ensure that the mutation of any pair of 

individual (i.e. chromosome) will result in new valid 

and meaningful individual for the problem. 

Conversely, the choice of the fitness function that 

discriminates and converts back to Boolean space 

should be carefully studied [9].  

 

3. Solving SAT Problems with Genetic 

Algorithms 
 

As for the satisfiability problem, the potential 

solutions are commonly modeled in terms of binary 

strings each of which has a sequence of 0 or 1 [4], [6], 

[7]. However, the challenge becomes the selection of a 

suitable fitness function [14]. In the case that the 

function is the Boolean expression itself, its evaluation 

takes the truth value of 0 or 1 depending on all variable 

assignments. Boolean function does not help to provide 

appropriate fitness differentiation between individuals 

in our genetic optimization.  A suitable solution could 

be a fitness function that makes the problem 

continuous so that each individual in the search space 

could come with a different value.  The Fuzzy sets 

support the transformation from boolean space to 

continuous space. However, some other approaches are 

commented here: 

 

De Jong and Spears [10] proposed AVERAGE 

function to replace AND operator and MAXIMUM 

function to replace OR operator, define the fitness 

function of the following expression as follows:   

 

F(x1, x2) = x1 AND (x1 OR ¬x2)   
 

The fitness function will be: 

 

F(x) = AVERAGE (x1, MAXIMUM (x1, x2)) 

 

However, choosing such a function has several 

drawbacks because it does not preserve some of the 

important boolean laws:  

 

Associativity law:  
(x1 AND x2) AND x3 ≡ x1 AND (x2 AND x3) 

Whereas 
AVERAGE (AVERAGE (x1, x2), x3) ≠  

AVERAGE(x1, AVERAGE (x2, x3)) 

 

Morgan law:  

x1 OR x2 ≡ NOT ((NOT x1) AND ((NOT x2)) 
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whereas 

 

MAXIMUM(x1, x2) ≠ 1 – ((1 – x1) + (1 – x2))/2 

 

Although the drawbacks of this fitness function, the 

algorithm in [10] succeeds to find a solution after 500 

generations. The challenge of finding a suitable fitness 

function should solve the problem in a more efficient 

way. Alternative approaches can be found in the Fuzzy 

theory which considers a continuous logical domain 

instead of a binary domain. AND and OR operations 

are commonly replaced by a triangular norm such as 

MIN and MAX functions. In general, any mathematical 

operator that satisfies associativity, monotonicity and 

commutativity can be used for this purpose. The work 

in [1] proposed arithmetic addition and product, to 

overtake the fitness function drawbacks The approach 

assigns partial true values between 0 and 1 to different 

boolean variables composing the potential solutions 

and applying fitness function by using the arithmetic 

product norm. Upon completion of the algorithm 

execution the fitness fuzzy vector is converted to a 

binary vector by applying the following biasing 

function variable: 

 

f(xi) = 0   if 0  ≤  xi  < 0.5  

f(xi) = 1   if 0.5  ≤ xi  ≤ 1 

 

The disadvantage of using such a biasing function 

arises when the variable xi is close to 0.5. The decision 

to convert xi to 0 or 1 becomes non-deterministic.  

 

The work in [1] demonstrates that the algorithm 

correctly solves Boolean expressions up to 200 

variables with no undesired convergence to 0.5 after 40 

generations and less than 2 hours of computation. After 

200 generations, variables begin to inevitably converge 

to 0.5. The algorithm is then extended by transforming 

the genetic algorithm into a recursive function which 

succeeds to solve boolean expressions up to 1200 

variables. 

 

The major lack of this approach is due to the time-

consuming and computational complexity. The fitness 

function should be applied to each potential solution, 

followed by a sequence of operations such as selection, 

crossover and finally mutation of chromosomes. The 

implementation of the recursive approach requires 

repeating several times computations that are already 

done. An interesting way to improve this approach 

consists of solving the undesired convergence to 0.5 by 

proposing an alternative solution to the recursion 

algorithm. 

 In the next section we introduce the repairing function 

to avoid the convergence to 0.5 and consequently 

reduce the computation complexity. 

 

4. Enhanced Algorithm Avoiding 0.5 

Convergence 

 
The enhanced algorithm relies on the fact that AND 

operator is associative which means that Boolean 

formula can be rewritten in terms of AND operators 

and Boolean expressions. A potential solution for an 

AND operand implies the solution of the whole 

formula. This powerful property will enables the 

decomposition of a formula of N boolean variables to 

into P chunks (i.e. sub-expression) of M variables 

where M < N. The decomposition allows the genetic 

algorithm that does not find a solution for a given M-

variable boolean expression to reapply the algorithm 

just for this M-variable expressions and not for the 

entire expression. In addition, the enhanced algorithm 

is extended with a repairing function to avoid 0.5 

convergences.  A repair function in genetic algorithms 

attempts to correct an individual (i.e. chromosomes) 

according to a particular problem to solve. For 

example, in [11] repairing functions are introduced to 

deal with scheduling constraints in the steel industry 

whereas in [2] they are introduced to deal with the TSP 

problems. In our context, the repairing function helps 

individuals to not converge to undesired value. The 

function guarantees that all variable assignments stay 

away from the value of 0.5.  

The pseudo code for the enhanced genetic algorithm is 

illustrated below. 

N:= NUMBER_OF_BOOLEAN_VARIABLES; 

M:= CHUNK_LENGTH; 

minterm := N_VARIABLE_MINTERM_TO_SATISFY; 

number_of_chunks := N / M 

remainder := N % M 

p := randomly_initial_population(40, M ); 

indexini := 1; 

indexfi := indexini + M; 

index:= 1; 

solution:=””  

sol:=””; 

 

repeat  

repeat 

    sol:= evolve(p,extrait(minterm,indexini,indexfi )); 

until sol = = extrait(minterm,indexini,indexfi) ; 

 

solution:=solution+sol ; 

indexini := indexini + M; 

indexfi := indexfi + M; 

index++; 

until index ≤ number_of_times  

indexfi := indexini + remainder; 

 

repeat 

    sol:= evolve(p,extrait(minterm,indexini,indexfi )); 

until sol = = extrait(minterm,indexini,indexfi) ; 

solution:=sol+evolve(p, extrait(minterm,indexini,indexfi)) 
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The evolve function performs all necessary 

operations to transform generations based on the 

fitness function. The function biasedSelection 

randomly selects couple of individuals with highest 

fitness value whereas the function makeCrossover 

performs  two chromosome’s crossover. Furthermore, 

let m be the value that variables must not converge to 

and σ the distance from m. An algorithm for generating 

a random population is given by: 

 

 
 

Since the individuals in the initial population are 

distant from the undesired convergence value, the 

fuzzy-genetic algorithm can be applied. The algorithm 

implements crossover between variables which makes 

possible generate offspring convergence to 0.5. The 

repairing function, f(x), helps to avoid the 

convergence. The function value of f(xi) substitutes the 

value of xi in an offspring chromosome where              

xi ∈ [m – σ, m + σ]. The repairing function defined as:  

 

f(xi) = m + σ      if m ≤  xi ≤ m + σ 

f(xi) = m - σ       if m - σ  ≤  x <  m 

 

The repairing function improves the algorithm in 

[1]. In fact, the problem of 0.5 convergence is avoided 

because binary patterns that yield to value of 0.5 is 

completely extincted. In addition, the divide and 

conquer approach (i.e associative property) that allows 

the representation of the Boolean formula in terms of 

expressions and AND operators significantly reduces 

the number of generations and individuals implied in 

each computation. 

 

 
 

5. Experimental Results 
 

We have developed a series of detailed experiments 

to demonstrate the feasibility of our algorithm and its 

repairing function. The algorithm was implemented 

using Java language and tested on a Pentium 4, 1.73 

GHz and 1 GBytes RAM. All algorithm parameter 

values are selected by a trial and error strategy, until 

we got a performance in time and memory that 

reasonably improves the one proposed in [1]. 

 

Parameter Value 

Mutation rate 0.01 

Number of chromosomes 40 

Number of generations 40 

Number of variables in chunk 14 

Number of bits 32 

Number of clones 6 

σ - value 0.1 

Crossover probability 0.85 
Table 1. Parameter values 

 

Same as the algorithm in [1], one single randomly 

generated minterm is chosen as Boolean expression to 

find the solution and reduce the computational time. 

Without loss of generality we can easily extend the 

solution to n minterms. As for the experimental results 

we implement the algorithm to solve a given minterm 

of N variables divided to P chunk-minterms each of 

which containing 14 variables. In addition, individuals 

are represented by vectors of decimal values between 0 

and 1, each decimal component of the vector is 

encoded by 32 bit binary representation of the product 

between the decimal number and 2
32

. A population 

consists of 40 individuals. An average of 40 

generations was necessary to the algorithm to find a 

randomly_initial_population(POPULATION_SIZE: int, 

CHUNK_SIZE:int) 

m:= 0.5; 

σ:=0.1; 

flag:=continue; 

population := Array[ 0 ... POPULATION_SIZE  ]; 

chromosome := Array [0 ... CHUNK_SIZE ]; 

n := POPULATION_SIZE; 

individual_index := 0 

repeat  

  gene_index:= 1 

   repeat  

           random_number = random (0, 1) 

           if ( m – σ ≤  random_number ≤  m + σ ) 

                flag := continue 

                        end if 

                        else 

                           flag:= stop 

    until flag  == stop 

     chromosome[gene_index] := random_number: 

     gene_index:= gene_index + 1; 

               until gene_index ≤ GENE_NUMBER 

   population[individual_index] := chromosome; 

   individual_index := individual_index + 1;  

until individual_index < n 

evolve(population:array[0...NUMBER_CHROMOSOMES],fitnessFunction:S

tring): String) 

 

return_chromosome := Array [0 ...fitnessFunction.size] 

 

NUMBER_OF_GENERATIONS := 40; 

ind_of_generations := 1; 

ind_of crossover := 1; 

repeat 

    

  repeat 

     chromo1 := biasedSelection (population); 

     chromo2 := biasedSelection (population); 

     makeCrossover( population, chromo1, chromo2); 

     ind_of_crossover:= ind_of_crossover + 1; 

   until ind_of_crossover ≤ NUMBER_CHROMOSOMES/2 

applyMutation(population); 

    sortByFitness(fitnessFunction) 

  return_chromosome:= population[NUMBER_CHROMOSOMES] 

  ind_of_generations:=ind_of_generations + 1; 

until ind_of_generations≤NUMBER_OF_GENERATIONS; 

 

return biasFunction(return_chromosome); 
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appropriate solution to a chunk. The fitness function is 

calculated from the product norm of the fuzzy 

chromosome genes (1-xi) or xi depending whether the 

boolean variable of the index i in the minterm is 

complemented or not. We adopt a ceiling function to 

selection parents similar to the function proposed in 

[1]. The choice of the ceiling function favorites the 

individual selection as best fitness individuals. Each 

individual has a probability of crossover of 0.85. The 

crossover is made component by component, rather 

than once per pair of chromosomes. A mutation rate of 

0.01 and six fittest individuals are cloned and included 

in the next generation. A σ value of 0.1 is used to 

guarantee that genes will always have a distance of 0.1 

away from 0.5. A summary of these parameters is 

shown in table 1. Figures 1 and 2 illustrate the 

behavior of the fittest individual per generation and the 

average fitness for an expression of 20 variables and σ 

value of 0.1. As we can observe, the repairing function 

demonstrates that after 45 generations each gene is far 

enough from 0.5 where the fitness and average values 

begin to quickly increase. 

 

 
Figure 1. Best fitness individual per generation 

 

Figure 3 shows a snapshot of the best fittest 

chromosome through generations. In contrast with the 

snapshots provided in [1], we observe that no Boolean 

variable is converging to 0.5. We can also check the 

result of the repair function. Some variables fluctuate 

around 0.4 and 0.6 values in the 20 generation and 

afterward they immediately begin to converge and get 

the desired solution after an average of 60 generation. 

 

When the number of variables reaches the 200 

threshold, some of variable values inevitably converge 

to 0.5 in [1] whereas applying the repairing function 

and the decomposition of N-variable functions into P 

groups of M variables, with M < N, makes possible to 

avoid the undesired convergence.  

 

 
Figure 2. Average Fitness per generation 

 
 

 

 
Figure 3. Snapshots of the fittest chromosome through 

generations 

 

In addition, the time performance of the fuzzy 

genetic algorithm is improved since individual and 

generation numbers remain constant even if the 

number of variables increases (see Figure 4.). In 

contrast with the algorithm in [1], size and number of 

individuals and generations increase when the number 

of variables increases. Thus, the complexity of our 

algorithm is linear (correlation_coef(x,y) = 

0.98456001) in contrast with the algorithm in [1] 

where the complexity is quadratic. 
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Figure 4. Correlation between the number of variables 

and algorithm execution time 

 

The algorithm in [1] took 3 hours to solve 800 

variable minterms, while our approach takes one hour 

and a half to solve 2400 variable minterms. Table 2 

illustrates the significant improvement of the algorithm 

in term of computation and execution time. 

 

 
Number of 

variables 

Population 

size 

Number of 

generations 

Number of 

repetitions 

Total 

time 

800 40 40 57 00:31:32 

500 40 40 35 00:14:36 

300 40 40 21 00:09:12 

100 40 40 7 00:03:15 

Table 2. Algorithm time to solve variables assignments 

 

6. Conclusion 
 

The satisfiability is a decision problem that belongs 

to NP-complete class problems. It deserves a special 

interest since any NP-Complete problem can be solved 

by transforming it to a satisfiability instance. Genetic 

algorithms have recently received a potential attention 

to explore the space of variable assignments find 

solutions to satisfiability problems. In this paper we 

studied the Pedrycz, Succi and Shai work [1] which is 

based on genetic algorithm and fuzzy logic theory. We 

improved the fuzzy genetic approach by applying a 

divide and conquer strategy to reformulate the Boolean 

expression. We introduced a repairing function to 

eliminate the recursion process and enhances 

drastically the computation time. The experimental 

results demonstrate advantages of our algorithm in 

term of complexity, convergence and computational 

time. The future work includes the recursive   

application of the divide and conquers strategy in order 

to study the impact on the computational complexity. 

 

7. References 
 

[1] W. Pedrycz, G. Succi and O. Shai. Genetic – Fuzzy 

Approach to the Boolean satisfiability Problem. IEEE 

Transactions of evolutionary computation, Vol 6. No 5, 

October 2002. 

 

[2] M.R.Garey and D.S. Jhonson, Computers and 

Intractability, a guide to the theory of NP Completeness. San 

Francisco CA: Freeman 1979 

 

[3] S.A. Cook. The complexity of Theorem Proving 

Procedures. University of Toronto.1971  

 

[4] J. Gotlieb, E. Marchiori and C. Rossi, Evolutionary 

Algorithms for the Satisfiability Problem. Evolutionary 

Computation, MIT press, vol.10, Nr.1, pp. 35-50, 2002. 

 

[5] The SATisfiability problem website,   
http://www.satlive.org/  [Last visited December 2008] 

 

[6] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, in 

Satisfiability Problem: Theory and Applications, DIMACS 

Series in Discrete Mathematics and Theoretical Computer 

Science, American Mathematical Society, 1997 

 

[7] S.A. Cook and D.G. Mitchell, Satisfiability Problem: 

Theory and Applications, DIMACS Series in Discrete 

Mathematics and Theoretical Computer Science, American 

Mathematical Society, 1997. 

 

[8] D. Goldberg. Genetic Algorithms in Search Optimization 

and Machine Learning. Reading MA Addison Wesley, 1989. 

 

[9] Z. Michalewicz,  Genetic Algorithms +Data Structures = 

Evolution Programs. Springer Verlag. Third edition 1998 

 

[10] K A Jong, W M Spears, Using Genetic Algorithms to 

solve NP-Complete problems. George Mason University, 

1989 

 

[11] J Dorn and M Guirch. Genetic Operators Based On 

Constraint Repair. Proceedings of the ECAI'94 Workshop on 

Applied Genetic and other Evolutionary Algorithms, Vienna 

University of Technology. 1994 

 

[12] M.R. Bonyadi, M.R. Azghadi and H.S. Hosseini. 

Solving traveling salesman problem using combinatorial 

evolutionary algorithm. 4th IFIP Conference on Artificial 

Intelligence Applications & Innovations, Athens, Greece, 17-

19 September, 2007 

  

[13] W. Pedrycz, Computational Intelligence: An 

Introduction (tutorial), IASTED Int. Conf. on Applied 

Modelling and Simulation, Banff, July 27-August 1, 1997 

 

[14] K. A. De Jong and W. M. Spears, “Using genetic 

algorithms to solve NP-complete problems,” in Proc. 3rd Int. 

Conf. Genetic Algorithms. San Mateo, CA: Morgan 

Kaufmann, 1989, pp. 124–132. 

 

 


