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Abstract: The earliest definitions of decision support systems (DSS) identify DSS as 
systems to support managerial decision makers in unstructured or semi-
unstructured decision situations. They are also defined as a computer-based 
information systems used to support decision-making activities in situations 
where it is not possible or not desirable to have an automated system 
perform the entire decision process. This chapter aims to delineate measure-
ment of level-of-satisfaction during decision making under an intelligent 
fuzzy environment. Before proceeding with the multi-criteria decision 
making model (MCDM), authors try to build a co-relation among DSS, 
decision theories, and fuzziness of information. The co-relation shows the 
necessity of incorporating decision makers’ level-of-satisfaction in MCDM 
models. Later, the authors introduce an MCDM model incorporating 
different cost factor components and the said level-of-satisfaction 
parameter. In a later chapter, the authors elucidate an application as well as 
validation of the devised model. The strength of the proposed MCDM 
methodology lies in combining both cardinal and ordinal information to get 
eclectic results from a complex, multi-person and multi-period problem 
hierarchically.
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1. INTRODUCTION

Nomenclature
D    Decision matrix 
A    Pair-wise comparison matrix among criteria (m × n) 
m    Number of criteria 
n    Number of alternatives of the pair-wise comparison matrix 

max   Principal eigen value of “A” matrix 
PV   Priority vector 
I.I.   Inconsistency index of “A” matrix 
R.I.   Random inconsistency index of “A” matrix 
I.R.   Inconsistency ratio of “A” matrix 

    Level of satisfaction of decision maker 
OFM  Objective factor measure 
SFM  Subjective factor measure 
OFC  Objective factor cost 
SI   Selection index 

   Fuzzy parameter that measures the degree of vagueness; = 0 
    indicates crisp.

1.1 DSS and Their Components 

Decision support systems (DSS) can be defined as computer-based 

semi-structured problems. Numerous definitions to DSS exist. The earliest 
definitions of DSS (Gorry and Morton, 1977) identify DSS as systems to 
support managerial decision makers in unstructured or semi-unstructured 
decision situations. Ginzberg and Stohr (1981) propose DSS as “a 
computer-based information system used to support decision making 
activities in situations where it is not possible or not desirable to have an 
automated system performs the entire decision process.” However, the 
most apt working definition is provided by Turban (1990). According to 
Turban (1990) “a DSS is an interactive, flexible, and adaptable computer 
based information system that utilizes decision rules, models, and model 
base coupled with a comprehensive database and the decision maker’s own 
insights, leading to specific, implementable decisions in solving problems 
that would not be amenable to management science models per se. Thus, a 
DSS supports complex decision making and increases its effectiveness.” 
Alter (2004) explores the assumption that stripping the word system from 
DSS, focusing on decision support, and using ideas related to the work 

information systems that aid a decision maker in making decisions for
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system method might generate some interesting directions for research and 
practice. Some of these directions fit under the DSS umbrella, and some 
seem to be excluded because they are not directly related to a technical 
artifact called a DSS. Alter (2004) suggests that “decision support is the 
use of any plausible computerized or non-computerized means for 
improving sense making and/or decision making in a particular repetitive 
or non-repetitive business situation in a particular organization.” 

However, the main objectives of DSS can be stated as follows: 

structured,
2. To identify plans and potential actions to resolve problems, 
3. To rank the solutions identified that can be implemented and provide a 

list of viable alternatives. 
DSS attempts to bring together and focus several independent 

disciplines. These are as follows: 

1. Operations research (OR), 
2. Management science (MS), 
3. Database technology, 
4. Artificial intelligence (AI), 
5. Systems engineering, 
6. Decision analysis. 

Artificial intelligence is a field of study that attempts to build software 
systems exhibiting near-human “intellectual” capabilities. Modern works 
on AI are focused on fuzzy logic, artificial neural networks (ANNs), and 
genetic algorithms (GAs). These works, when integrated with DSS, 
enhance the performance of making decisions. AI systems are used in 
creating intelligent models, analyzing models intelligently, interpreting 
results found from models intelligently, and choosing models appropriately 
for specific applications. 

Decision analysis may be divided into two major areas. The first, 
descriptive analysis, is concerned with understanding how people actually 
make decisions. The second, normative analysis, attempts to prescribe how 
people should make decisions. Both are issues of concern to DSS. The 
central aim of decision analysis is improving decision making processes.

Decisions, in general, are classified into three major categories: 

Structured decisions, 
Unstructured decisions,
Semi-structured decisions. 

1. To provide assistance to decision makers in situations that are semi-
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Structured decisions are those decisions where all steps of decision 
making are well structured. Computer code generation is comparatively 
easy for these types of decisions. 

In unstructured decisions, none of the steps of decision making is 
structured. AI systems are being built up to solve the problems of unstruc-
tured decisions. 

Semi-structured decisions comprise characteristics of structured and 
unstructured decisions. 

The DSS framework contains two types of components, which may be 
used either individually or in tandem. The first component is a multi-
objective programming (MOP) model, which employs mathematical 
programming to generate alternative mitigation plans. Typically, an MOP 
model must be formulated for the specific problem at hand, but once 
formulated, it can be solved on a computer using commercially available 
software. The second component is a multi-criteria decision making 
(MCDM) model, used for evaluating decision alternatives that have been 
generated either by the MOP model or by some other method. MCDM 
models are typically “shells” that can be applied to a wide range of 
problem types. A variety of MCDM methodologies exist, some of which 
are available in the form of commercial software. A manufacturing 
information system can also be used in conjunction with the DSS, for both 
managing data and for compiling decisions of alternative plans generated 
by the DSS. 

1.2 Decision-Making Processes 

Strategic, tactical, and operative decisions are made on the various aspects 
of business operations. The vision of an industrial enterprise must take into 
consideration the possible changes in its operational environment, 
strategies, and the leadership practices. Decision making is supported by 
analyses, models, and computer-aided tools. Technological advances have 
an impact on the business of industrial enterprises and on their uses of new 
innovations. Industrial innovations contribute to increased productivity and 
the diversification of production and products; they help to create better, 
more challenging jobs and to minimize risks.  

Long-term decisions have an impact on process changes, functional 
procedures and maintenance and also on safety, performance, costs, human 
factors and organisations. Short-term decisions deal with daily actions and 
their risks. Decision-making is facilitated by an analysis that incorporates a 
classification of one’s own views, calculating numerical values, translating 



Intelligent Fuzzy-MCDM Theory 239

the results of analysis into concrete properties and a numerical evaluation 
of the properties. One method applied for this purpose is the Analytic 
Hierarchy Process (AHP) model (Saaty, 1990). This model, which has 
many features in common with the other MCDMs applied in the current 
research work, is suited for manufacturing decision making processes that 
aim at making the correct choices in both the short and the long term. 

1.3 MCDM

According to Agrell (1995) MCDM offers the methodology for decision 
making analysis when dealing with multiple objectives. This may be the 
case when the success of the application depends on the properties of the 
system, the decision maker, and the problem. Problems with engineering 
design involve multiple criteria: the transformation of resources into 
artifacts, a desire to maximize performance, and the need to comply with 
specifications.

The MCDM methodology can be used to increase performance and to 
decrease manufacturing costs and delays of enterprises. The Multiple-
Criteria Decision Support System (MC-DSS) uses the MCDM 
methodology and ensures mathematical efficiency. The system employs 
graphical presentations and can be integrated with other design tools. 
Modeling and analyzing complex systems always involve an array of 
computational and conceptual difficulties, whereas a traditional modeling 
approach is based primarily on simulation and concepts taken from control 
theory.

The strength of the MCDM lies in the systematic and quantitative 
framework it offers to support decision making. Comprehensive tuning or 
parametric design of a complex system requires elaboration on using the 
modeling facilities of system dynamics and on the interactive decision 
making support of the MCDM. 

Most experienced decision makers do not rely on a theory to make their 
decisions because of cumbersome techniques involved in the process of 
making decisions. But analytic decision making is of tremendous value 
when the said analytic process involves simple procedures and is 
accessible to the lay user as well as it possesses meaningful scientific 
justification of the highest order (Saaty, 1994).
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The benefits of descriptive analytical approaches for decision making 
are as follows (Saaty, 1994): 

1. To permit decision makers to use information relating to decision 
making in a morphological way of thoroughly modeling the decision 
and to make explicit decision makers’ tactical knowledge; 

2. To permit decision makers to use judgments and observations in order 
to surmise relations and strengths of relations in the flow of interacting 
forces moving from the general to the particular and to make 
predictions of most likely outcomes; 

3. To enable decision makers to incorporate and trade off attribute values; 
4. To enable decision makers to include judgments that result from 

intuition, day-to-day experiences, as well as those that result from 
logic;

5. To allow decision makers to make gradual and more thorough revisions 
and to combine the conclusions of different people studying the same 
problem in different places.

1.4 Information vis-à-vis MCDM Theories 

Information is a system of knowledge that has been transformed from raw 
“data” into some meaningful form. Data are the raw materials for 
information. Data are also expressions of “events.” Information has value 
in current or prospective decision making at a specified time and place for 
taking appropriate “action” resulting in evaluation of “performance.” In this 
context attention is drawn to Figure 1. The terms “data” and “information” 
are often used interchangeably, but there is a distinction in that. Data are 
processed to provide information, and the information is related to decision 
making (Davis, 1974). A schematic diagram illustrating relationship 
between data and information is shown in Figure 2. If there is no need for 
making decisions, information would be unnecessary. 

Information is the currency of the new economy. Yet most real-world 
cases lack the means to effectively organize and distribute the information 
their employees need to make quick, smart business decisions. A structured, 
personalized, self-serve way to access information and collaborate across 
departmental and geographical boundaries provides the basic needs for 
making a good decision. 
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Figure 1. Generation and utilization of information 

Figure 2. Converting raw data by an information system into useful information 

1.5 Hidden Parameters in Information 

1.5.1 Uncertainty in Information 

Uncertainty permeates understanding of the real world. The purpose of 
information systems is to model the real world. Hence, information 
systems must be able to deal with uncertainty. 

Many information systems include capabilities for dealing with some 
kinds of uncertainty. For example, database systems can represent missing 
values, information retrieval systems can match information to requests 
using a “weak” matching algorithm, and expert systems can represent rules 
that are known to be true only for “most” or “some” of the time. By and 
large, commercial information systems (e.g., database systems, information 
retrieval systems, or expert systems) have been slow to incorporate 
capabilities for dealing with uncertainty. 

Uncertainty also has a long history of being associated with decision 
making research as Harris (1998) notes: 

Decision making is the process of sufficiently reducing uncertainty 
and doubt about alternatives to allow a reasonable choice to be 

Data ProcessingData Information
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made from among them. This definition stresses the information 
gathering function of decision making. It should be noted here that 
uncertainty is reduced rather than eliminated. Very few decisions 
are made with absolute certainty because complete knowledge 
about all the alternatives is seldom possible. 
Researchers in various fields have also been concerned with the 

relationship between uncertainty and information seeking. In information 
science, the idea of uncertainty underlies all aspects of information seeking 
and searching. Kuhlthau (1993) has proposed uncertainty as a basic 
principle for information seeking, defining uncertainty as “a cognitive state 
which commonly causes affective symptoms of anxiety and lack of 
confidence.” And, drawing on her research, she notes that, “Uncertainty 
and anxiety can be expected in the early stages of the information search 
process.… Uncertainty due to a lack of understanding, a gap in meaning, 
or a limited construct initiates the process of information seeking.” 

One of the biggest challenges for a manufacturing decision maker is the 
degree of uncertainty in the information that he or she has to process. In 
making some decisions, this is especially obvious when experts in the 
same area provide conflicting opinions on the attributes meant for making 
decisions. Disagreement among experts making decisions results in 
conflicting effects information. The decision maker is likely to place 
increased importance on the source of the information. This in itself is not 
surprising, but the battle of the credentials that follows perhaps is. There 
seems to be a danger that the may come to rely on the reputation of an 
expert, rather than on ensuring thorough scrutiny of the information that he 
or she has provided.

Actors in the decision making process may use uncertainty in the 
effects, and information as a means to promote their attributes. A 
proponent can try to downplay the effects of a development because they 
may not occur, whereas those in opposition may attempt to stall a project 
claiming that the disputed effects are likely to happen and are serious in 
nature. The decision maker is then left with the difficult task of navigating 
these disparities to come to a decision. In particular in the face of 
uncertainty, there seems to be a human tendency to make personal 
observations the deciding factor. 

1.5.1.1 Sources of Uncertainty 
Uncertainties are solely due to the unavailability of “perfect” information. 
Uncertainty might result from using unreliable information sources, for 
example, faulty reading instruments, or input forms that have been filled 
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is a result of system errors, including input errors, transmission “noise,” 
delays in processing update transactions, imperfections of the system 
software, and corrupted data owing to failure or sabotage. At times, 
uncertainty is the unavoidable result of information gathering methods that 
require estimation or judgment.

In other cases, uncertainty is the result of restrictions imposed by the 
model. For example, if the database schema permits storing at most two 
occupations per employee, descriptions of occupation would exhibit 
uncertainty. Similarly, the sheer volume of information that is necessary to 
describe a real-world object might force the modeler to turn to 
approximation and sampling techniques. 

1.5.1.2 Degree of Uncertainty 
The relevant information that is available in the absence of certain 
information may take different forms, each exhibiting a different level of 
uncertainty. Uncertainty is highest when the mere existence of some  
real-world object is in doubt. The simplest solution is to ignore such 
objects altogether. This solution, however, is unacceptable if the model 
claims to be closed world (i.e., objects not modeled do not exist). 

Uncertainty is reduced somewhat when each element is assigned a 
value in a prescribed range, to indicate the certainty that the modeled 
object exists. When the element is a fact, this value can be interpreted as 
the confidence that the fact holds; when it is a rule, this value can be 
interpreted as the strength of the rule (percent of cases where the rule 
applies).

Now it is assumed that “existence” is assured, but some or all of the 
information with which the model describes an object is unknown. Such 
information has also been referred to as incomplete, missing, or unavailable. 

Uncertainty is reduced when the information that describes an object is 
known to come from a limited set of alternatives (possibly a range of 
values). This uncertainty is referred to as disjunctive information. Note 
that when the set of alternatives is simply the entire “universe,” this case 
reverts to the previous (less informative) case. 

Uncertainty is reduced even more when each alternative is 
accompanied by a number describing the probability that it is indeed the 
true description (and the sum of these numbers for the entire set is 1). In 
this case, the uncertain information is probabilistic. Again, when the 
probabilities are unavailable, probabilistic information becomes disjunctive 
information.

out incorrectly (intentionally or inadvertently). In other cases, uncertainty 
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Occasionally, the information available to describe an object is 
descriptive rather than quantitative. Such information is often referred to as 
fuzzy or vague information. 

1.5.1.3 Vagueness in Information 
Russell (1923) attributes vagueness to being mostly a problem of language. 
Of course, language is part of the problem, but it is not the main problem. 
There would still be vagueness even if we had a very precise, logically 
structured, language. The principal source of vagueness seems to be in 
making discreet statements about continuous phenomenon. According to 
Russell (1923), “Vagueness in a cognitive occurrence is a characteristic of 
its relation to that which is known, not a characteristic of the occurrence in 
itself.” Russell (1923) adds, “Vagueness, though it applies primarily to 
what is cognitive, is a conception applicable to every kind of 
representation.”

Surprisingly, Wells (1908) was among the first to suggest the concept 
of vagueness:

Every species is vague, every term goes cloudy at its edges, and so 
in my way of thinking, relentless logic is only another name for 
stupidity for a sort of intellectual pigheadedness. If you push a 
philosophical or metaphysical enquiry through a series of valid 
syllogisms never committing any generally recognized fallacy you 
nevertheless leave behind you at each step a certain rubbing and 
marginal loss of objective truth and you get deflections that are 
difficult to trace, at each phase in the process. Every species 
waggles about in its definition, every tool is a little loose in its 
handle, every scale has its individual.
In real-world problems there is always a chance of getting introduced 

to the vagueness factor when information deals in combination with both 
cardinal and ordinal measures. It should always be remembered that 
reduction of vagueness is to be addressed in a situation where decision 
alternatives are well inter-related and have both cardinal and ordinal 
criteria for selection.

1.5.1.4 Sources of Vagueness 
Linguistic expressions in classic decision making processes incorporate 
unquantifiable, imperfect, nonobtainable information and partially ignorant 
facts. Data combining both ordinal and cardinal preferences in real-world 
decision making problems are highly unreliable and both contain a certain 
degree of vagueness. Crisp data often contains some amount of vagueness 



Intelligent Fuzzy-MCDM Theory 245

and, therefore, need the attention of decision makers in order to achieve a 
lesser degree of vagueness inherent.

The purpose of decision making processes is best served when 
imprecision is communicated as precisely as possible but no more 
precisely than warranted. 

2. PRIOR WORKS ON FUZZY-MCDM  
FOR SELECTING BEST CANDIDATE-
ALTERNATIVE 

The available literature on MCDM tackling fuzziness is as broad as it is 
diverse. Literature contains several proposals on how to incorporate the 
inherent uncertainty as well as the vagueness associated with the decision 
maker’s knowledge into the model (Arbel, 1989; Arbel and Vargas, 1990; 
Banuelas and Antony, 2004; Saaty and Vargas, 1987). The analytic 
hierarchy process (AHP) (Saaty, 1980 and 1990) literature, in this regard, 
is also vast. 

There has been a great deal of interest in the application of fuzzy sets to 
the representation of fuzziness and uncertainty in management decision 
models (Buckley, 1988; Chen and Hwang, 1982; Ghotb and Warren, 1995; 
Gogus and Boucher, 1997; Van Laarhoven and Pedrycz, 1983; Liang and 
Wang, 1994; Lai and Hwang, 1994; Zimmerman, 1976, 1987). Some 
approaches were made to handle the uncertainties of MCDM problems. 
Bellman and Zadeh (1970) have shown fuzzy set theory’s applicability to 
the MCDM study. Yager and Basson (1975) and Bass and Kwakernaak 
(1977) have introduced maximin and simple additive weighing model 
using the membership function (MF) of the fuzzy set. Most of the recent 
literature is filled with mathematical proofs.

A decision maker needs an MCDM assessment technique in regard to 
its fuzziness that can be easily used in practice. An approach was taken 
earlier by Marcelloni and Aksit (2001). Their aim was to model 
inconsistencies through the application of fuzzy logic-based techniques. 
Boucher and Gogus (2002) examined certain characteristics of judgment 
elicitation instruments appropriate to fuzzy MCDM. In their work the 
fuzziness was measured using a gamma function.

By defining a decision maker’s preference structure in fuzzy linear 
constraint (FLC) with soft inequality, one can operate the concerned fuzzy 
optimization model with a modified S-curve smooth MF to achieve the 
desired solution (Watada, 1997). One form of logistic MF to overcome 
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difficulties in using a linear membership function in solving a fuzzy 
decision making problem was proposed by Watada (1997). However, it is 
expected that a new form of logistic membership function based on 
nonlinear properties can be derived, and its flexibility in fitting real-life 
problem parameters can be investigated. Such a formulation of a nonlinear 
logistic MF was presented in this work, and its flexibility in taking up the 
fuzziness of the parameter in a real-life problem was demonstrated. 

Carlsson and Korhonen (1986) have illustrated, through an example, 
the usefulness of a formulated MF, viz., an exponential logistic function. 
Their illustrated example was adopted to test and compare a nonlinear MF 
(Lootsma, 1997). Such an attempt using the said validated nonlinear MF 
and comparing the results was made by Vasant et al. (2005). Compre-
hensive tests based on a real-life industrial problem have to be undertaken 
on the newly developed membership function in order to prove further its 
applicability in fuzzy decision making (Vasant, 2003; Vasant et al., 2002; 
2005). To test the newly formulated MF in problems as stated above, a 
software platform is essential. In this work MATLAB has been chosen as 
the software platform using its M-file for greater flexibility. 

In the past, studies on decision making problems were considered on 
the bipartite relationship of the decision maker and analyst (Tabucanon, 
1996). This is with the assumption that the implementers are a group of 
robots that are programmed to follow instructions from the decision maker. 
This notion is now outdated. Now a tripartite relationship is to be 
considered, as shown on Figure 3, where the decision maker, the analyst, 
and the implementer will interact in finding a fuzzy satisfactory solution in 
any given fuzzy system. This is because the implementers are human 
beings, and they have to accept the solutions given by the decision maker 
to be implemented under a turbulent environment. 

In case of tripartite fuzzy systems, the decision maker will 
communicate and describe the fuzzy problem with an analyst. Based on 

Figure 3. Tripartite relationship for MCDM problems 
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MFs, solve the fuzzy problems, and provide the solution back to the 
decision-maker. After that, the decision maker will provide the fuzzy 
solution with a trade off to the implementer for implementation. An 
implementer has to interact with decision maker to obtain an efficient and 
highly productive fuzzy solution with a certain degree of satisfaction. This 
fuzzy system will eventually be called a high productive fuzzy system 
(Rommelfanger, 1996). A tripartite relationship, decision maker analyst
implementer, is essential to solve any industrial problem.

The following criticisms of the existing literatures, in general, are made 
after a study of the existing vast literature on the use of various types of 
MFs in finding out fuzziness patterns of MCDM methodologies: 

1. Data combining both ordinal and cardinal preferences contain non-
obtainable information and partially ignorant facts. Both ordinal and 
cardinal preferences contain a certain degree of fuzziness and are 
highly unreliable, unquantifiable and imperfect. 

2. Simplified fuzzy MFs, viz., trapezoidal and triangular and even gamma 
functions, are not able to bring out real-world fuzziness patterns in 
order to elucidate a degree of fuzziness inherent in the MCDM model. 

3. Level-of-satisfaction of the decision makers should be judged through a 
simple procedure while making decisions through MCDM models. 

4. An intelligent tripartite relationship among the decision maker, analyst 
and implementer is essential, in conjunction to a more flexible MF 
design, to solve any real-world MCDM problem. 

Among many diversified objectives of the current work, one objective 
is to find out fuzziness patterns of the candidate-alternatives having 
disparate level-of-satisfaction in MCDM model. Relationships among the 
degree of fuzziness, level-of-satisfaction and the selection-indices of the 
MCDM model guide decision makers under a tripartite fuzzy environment 
in obtaining their choice tradeoff with a predetermined allowable 
imprecision.

Another objective of the current work is to provide a robust, quantified 
monitor of the level-of-satisfaction among decision makers and to calibrate 
these levels of satisfaction against decision makers’ expectations. Yet 
another objective is to provide a practical tool for further assessing the 
impact of different options and available courses of action. 

the data that are provided by the decision maker, the analyst will formulate 
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3. COMPONENTS OF THE MCDM MODEL 

The proposed MCDM model considers a fuzziness pattern in disparate 
level-of-satisfaction of the decision maker. The model outlines a MF for 
evaluating degree of fuzziness hidden in the Eq. (1). AHP provides the 
decision maker’s with a vector of priorities (PV) to estimate the expected 
utilities of each candidate-FMS. 

A mathematical model was proposed by Bhattacharya et al. (2004, 
2005) to combine cost factor components with the importance weightings 
found from AHP. The governing Eq. of the said model is:

OFM = Objective factor measure, 
OFC = Objective factor cost, 
SFM = Subjective factor measure, 
SI = Selection index, 

= Objective factor decision weight,
n = Finite number of candidate-alternative.

iii 1 OFMSFMSI  (1) 

where

n

1l

l
l

l
1

OFCOFC
OFM  (2) 

In the said model, AHP plays a crucial role. AHP is an MCDM method, 
and it refers to making decisions in the presence of multiple, usually 
conflicting, criteria. A criterion is a measure of effectiveness. It is the basis 
for evaluation. Criteria emerge as a form of attributes or objectives in the 
actual problem setting. In reality, multiple criteria usually conflict with 
each other. Each objective/attribute has a different unit of measurement. 
Solutions to the problems by AHP are either to design the best alternative 
or to select the best one among the previously specified finite alternatives. 

For assigning the weights to each of the attributes as well as to the 
alternative processes for constructing the decision matrix and pair-wise 
comparison matrices, the phrase like “much more important” is used to 
extract the decision maker’s preferences. Saaty (1990) gives an intensity 
scale of importance (refer to Table 1) and has broken down the importance 
ranks.
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Table 1. The Nine-Point Scale of Pair-Wise Comparison 

Intensity scale Interpretation
1 Equally important
3 Moderately preferred
5 Essentially preferred
7 Very strongly preferred 
9 Extremely preferred
2, 4, 6, 8 Intermediate importance between two adjacent judgments 

In AHP the decision matrix is always a square matrix. Using the 
advantage of properties of eigenvalues and eigenvectors of a square 
matrix, the level of inconsistency of the judgmental values assigned to 
each elements of the matrix is checked. 

In this chapter the proposed methodology is applied to calculate the 
priority weights for functional, design factors and other important 
attributes by eigenvector method for each pair-wise comparison matrix. 
Next, global priorities of various attributes rating are found by using AHP. 
These global priority values are used as SFM in Eq. (1). The pair-wise 
comparison matrices for five different factors are constructed on the basis 
of Saaty’s nine-point scale (refer to Table 1). The objective factors, i.e., 
OFM, and OFC are calculated separately by using cost factor components.

In the mathematical modeling for finding the SFMi values, decomposi-
tion of the total problem (factor-wise) into smaller sub-problems has been 
done. This is done so that each sub-problem can be analyzed and 
appropriately handled with practical perspectives in terms of data and 
information. The objective of decomposition of the total problem for 
finding out the SFM values is to enable a pair-wise comparison of all the 
elements on a given level with respect to the related elements in the level 
just above. 

The proposed algorithm consists of a few steps of calculations. Prior to 
the calculation part, listing of the set of candidate-alternatives is carried 
out. Next, the cost components of the candidate-alternatives are quantified. 
Factors, on which the decision making is based, are identified as intrinsic 
and extrinsic. A graphical representation depicting the hierarchy of the 
problem in terms of overall objective, factors, and number of alternatives 
is to be developed. Next follows the assigning of the judgmental values to 
the factors as well as to the candidate-alternatives to construct the decision 
matrix and pair-wise comparison matrices, respectively. 

A decision matrix is constructed by assigning weights to each factor 
based on the relative importance of its contribution according to a nine-
point scale (refer to Table 1). Assigning the weights to each candidate-
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alternative for each factor follows the same logic as that of the decision 
matrix. This matrix is known as a pair-wise comparison matrix. The PV 
values are determined then for both the decision and the pair-wise 
comparison matrices. The max for each matrix may be found by 
multiplication of the sum of each column with the corresponding PV value 
and subsequent summation of these products. 

There is a “check” in the judgmental values given to the decision and 
pair-wise comparison matrices for revising and improving the judgments. 
If I.R. is greater than 10%, the values assigned to each element of the 
decision and pair-wise comparison matrices are said to be inconsistent. For 
I.R. < 10%, the level of inconsistency is acceptable. Otherwise the level of 
inconsistency in the matrices is high and the decision maker is advised to 
revise the judgmental values of the matrices to produce more consistent 
matrices. It is expected that all the comparison matrices should be 
consistent. But the very root of the judgment in constructing these matrices 
is the human being. So, some degree of inconsistency of the judgments of 
these matrices is fixed at 10%. Calculation of I.R. involves I.I., R.I., and 
I.R. These matrices are evaluated from Eqs. (3), (4) and (5) respectively.

max(    )I.I. = 
(     1)

n
n

 (3) 

[1.98  (   2)]R.I. = n
n

 (4) 

I.I.I.R. = 
R.I.

 (5) 

The OFMi values are determined by Eq (6). 

1
i i

1 i

1OFM  [OFC   ]
OFC

n

i

 (6) 

The SFMi values are the global priorities for each candidate-alternative. 
SFMi may be found by multiplying each of the decision matrix PV values 
to each of the PV value of each candidate-alternative for each factor. Each 
product is then summed up for each alternative to get SFMi.

For an easy demonstration of the proposed fuzzified MCDM model, 
efforts for additional fuzzification are confined assuming that differences 
in judgmental values are only 5%. Therefore, the upper bound and lower 
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1      

( )
1
0

L

L Ux

U

x x
Bf x x x x
Ce

x x

bound of SFMi as well as SIi indices are to be computed within a range of 
5% of the original values. In order to avoid complexity in delineating the 
technique proposed hereinbefore, we have considered the 5% measurement. 
One can fuzzify the SFMi values from the very beginning of the model by 
introducing a modified S-curve MF in AHP, and the corresponding 
fuzzification of SIi indices can also be carried out using the holistic 
approach used in Eq. (1). The set of candidate-alternatives are then ranked 
according to the descending order of SIi indices (refer to Eq. 7). 

 (7) 

In this work, a monotonically nonincreasing logistic function has been 
used as a membership function:

 (8) 

where  is the level-of-satisfaction of the decision maker; B and C are 
scalar constants; and , 0< <  is a fuzzy parameter that measures the 
degree of vagueness (fuzziness), wherein = 0 indicates crisp. Fuzziness 
becomes highest when .

The generalized logistic membership function is defined as 

 (9) 

To fit into the MCDM model in order to sense its degree of fuzziness, 
the Eq. (9) is modified and redefined as follows: 

b

b

ba
x

a

a

xx0
xx

xxx
Ce1

B
xx
xx1

x  (10) 

In Eq. (10) the membership function is redefined as 0.001 (x)
0.999. This range is selected because in real-world situations the 
workforce need not be always 100% of the requirement. At the same time 

1ln 1
SFMi

i

U L
i L

LSI

LSI LSI ALSI LSI
C

~

( )
1 x

Bf x
Ce

0.999

0.001
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the workforce will not be 0%. Therefore, there is a range between x0 and x1

with 0.001 ( )x  0.999. This concept of range of ( )x is used in this 
chapter.

Choice of the level-of-satisfaction of the decision maker, i.e., , is an 
important issue. It is the outcome of the aggregate decision by the design 
engineer, production engineer, maintenance engineer, and capital investor 
of a manufacturing organization. However, the selection of a candidate-
alternative may give different sets of results for different values of  for 
the same attributes and cost factor components. That’s why the proposed 
model includes fuzzy-sensitivity plots to analyse the effect of  as well as 
the degree of fuzziness, , in the candidate-alternative selection problem. 

4. FORMULATION OF THE INTELLIGENT 
FUZZIFIED MCDM MODEL 

4.1 Membership Function

There are 11 in-built membership functions in the MATLAB fuzzy 
toolbox. In the current study, a modified version of No. 7 MF has been 
used. All the built-in MF includes 0 and 1. In the current work, 0 and 1 
have been excluded and the S-shaped membership function has been 
extensively modified accordingly.

As mentioned by Watada (1997), a trapezoidal MF will have some 
difficulties such as degeneration, i.e., some sort of deterioration of 
solution, while introducing fuzzy problems. In order to solve the issue of 
degeneration, we should employ a non linear logistic function such as a 
tangent hyperbolic that has asymptotes at 1 and 0.  

In the current work, we employ the logistic function for the nonlinear 
membership function as given by

( )
1 x

Bf x
Ce

 (11) 

where B and C are scalar constants and , 0 <  <  is a fuzzy 
parameter that measures the degree of vagueness, wherein  = 0 indicates 
crisp. Fuzziness becomes highest when .

Eq. (11) will be of the form as indicated by Figure 4 when 0 <  < .
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Figure 4. Variation of logistic MF with respect to fuzzy parameter,  (where m2 > m1)

The reason why we use this function is that the logistic MF has a similar 
shape as that of the tangent hyperbolic function employed by Leberling 
(1981) but it is more flexible (Bells, 1999) than the tangent hyperbola. It is 
also known that a trapezoidal MF is an approximation to a logistic function. 
Therefore, the logistic function is very much considered an appropriate 
function to represent a vague goal level. This function is found to be very 
useful in making decisions and in implementation by the decision maker 
and implementer (Lootsma, 1997; Zimmerman, 1985; 1987).  

especially in industrial engineering problems, a non linear function such as 
modified MF can be used. This MF is used when the problems and its 
solutions are independent (Varela and Riberio, 2003). It should be 
emphasized that some nonlinear MFs such as S-curve MFs are much more 
desirable for real-life application problems than that of linear MFs. 

The logistic function, Eq. (11), is a monotonically nonincreasing 
function, which will be employed as a fuzzy MF. This is very important 
because, due to an uncertain environment the availability of the variables 
are represented by the degree of fuzziness.

The said MF can be shown to be non increasing as

2(1 )

x

x

df BC e
dx Ce

 (12) 

Moreover, to avoid linearity in the real-life application problems, 
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An MF is flexible when it has vertical tangency, an inflexion point, and 

asymptotes. Since B, C, , and x are all greater than zero, 0df
dx

.

Furthermore it can be shown that Eq. (11) has asymptotes at f(x) = 0 and 
f(x) = 1 at appropriate values of B and C. This implies: 

– lim 0
x

df
dx

 and 
0

lim 0
x

df
dx

These asymptotes can be proved as follows. 

From Eq. (12), one gets 

lim
x

df
dx

.

Therefore, using L’hopital’s rule, one obtains 

lim lim
2(1 )xx x

df B
dx Ce

= 0 (13)

As 0x , the situation is less vague and hence 0 .
From Eq. (12), one gets  

20
lim 0

(1 )x

df BC
dx C

, when 0  (14) 

In addition to the above equation, it can be shown that the logistic 
0 0 0

Furthermore it can also be shown that the said logistic function has a 
point of inflexion at x = x0, such that 0

'' ( )f x , with '' ( )f x being the 
second derivative of f(x) with respect to x. An MF of S-curve nature, in 
contrast to linear function, exhibits the real-life problem. 

The generalized logistic MF is defined as 

function Eq. (11) has a vertical tangent at x = x , x  is the point where f(x ) = 0.5. 



Intelligent Fuzzy-MCDM Theory 255

1

( )
1
0

L

L Ux
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x x
Bf x x x x
Ce

x x

(15)

The S-curve MF is a particular case of the logistic function defined in 
Eq. (15). The said S-curve MF has specific values of B, C and . The 
logistic function as defined in Eq. (11) was indicated as an S-curve MF by 
Zadeh (1971; 1975).

4.2 Design of Modified, Flexible S-curve MF

To fit into the MCDM model in order to sense its degree of fuzziness,  

1
0.999

1
0.001
0

a

a

a b
x

b

b

x x
x x

Bx x x x
Ce

x x
x x

 (16) 

Figure 5. Modified S-curve membership function 

1.0

0.999

0.5

0.001

0 xa x0 xb x

(x)

Eq. (15) is modified and redefined as follows and illustrated in Figure 5. 
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We rescale the x-axis as xa = 0 and xb = 1 in order to find the values of 
B, C, and . Nowakowska (1977) has performed such a rescaling in his 
work on the social sciences.

The values of B, C, and  are obtained from Eq. (16) as

B = 0.999 (1 + C) (17)

0.001.
1 y

B
Ce

 (18) 

By substituting Eq. (17) into Eq. (18), one gets 

0.999 1
0.001.

1 y

C
Ce

(19)

Rearranging Eq. (19), one gets 

1 0.998ln 0.999 .
0.001 C

 (20) 

Since B and depend on C, one requires one more condition to get the 
.

Let, when 0 2

a bx xx , (x0) = 0.5.

Therefore,

2

0.5
1

B

Ce
, (21)

and hence

2 12ln .B
C

 (22) 

values for B, C, and 
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Substituting Eq. (20) and Eq. (21) into Eq. (22), we obtain 

2(0.999)(1 ) 1 1 0.9982 ln ln 0.999
0.001

C
C C

   (23) 

20.998 1.998 998 999C C C  which in turn yields (24) 

Eq. (24) is solved and it is found that

–994.011992 988059.8402 3964.127776
1990.015992

C   (25) 

Since C has to be positive, Eq. (22) gives 001001001.0C , and 
from Eqs. (17) and (22), one gets B = 1 and  = 13.81350956.

Thus, it is evident from the preceding sections that the flexible, 
modified S-curve MF can be more easily handled than other nonlinear MFs 
such as the tangent hyperbola. The linear MF such as the trapezoidal MF is 
an approximation from a logistic MF and is based on many idealistic 
assumptions. These assumptions contradict the realistic real-world 
problems.

Therefore, the S-curve MF is considered to have more suitability in 
sensing the degree of fuzziness in the fuzzy-uncertain judgmental values of 
a decision maker. The modified S-curve MF changes its shape according to 
the fuzzy judgmental values of a decision maker and therefore, a decision 
maker finds it suitable to apply his/her strategy to MCDM problems using 
these judgmental values. 

Thus the proposed S-shaped membership function is flexible due to its 
following characteristics: 

(i) (x) is continuous and strictly monotonously nonincreasing; 
(ii) (x) has lower and upper asymptotes at (x) = 0 and (x) = 1 

as x  and x  0, respectively; 
(iii) (x) has inflection point at 

0
1 1ln 2 with 1x A C

C
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The fuzzy intelligence of the proposed MCDM model is incorporated 
under a tripartite environment. A fuzzy rule-based decision (if then rule) 
is incorporated in the algorithm to sense the fuzziness patterns under a 
disparate level-of-satisfaction of the decision maker. The aim is to produce 
a rule that works well on previously unseen data. 

In the next chapter it will be demonstrated how to compute the degree 
of fuzziness and level-of-satisfaction, and a correlation among degree of 
fuzziness having a disparate level-of-satisfaction and the selection indices 
will also be elucidated to guide the decision maker in selecting the best 
candidate-alternative under an unstructured environment. 

5. CONCLUSION

The proposed MCDM model shows how to measure a parameter called 
“level-of-satisfaction” of the decision maker while making any kind of 
decision. “Level-of-satisfaction” is a much-quoted terminology in classic 
as well as modern economics. To date, we are not aware of any reported 
research work in which level-of-satisfaction has been measured with a 
rigorous mathematical logic. The proposed model is a one-of-a-kind 
solution to incorporate the “level-of-satisfaction” of decision maker. 
Another solution can also be made with many sophisticated tools, like 
some approximation tool using neuro-fuzzy hybrid models.

The strength of the proposed MCDM methodology lies in combining 
both cardinal and ordinal information to get eclectic results from a 
complex, multi-person, and multi-period problem hierarchically. The 
methodology proposed in this chapter is very useful in quantifying the 
intangible factors in a good manner and in finding out the best among the 
alternatives depending on their cost factors. Contrary to the traditional way 
of selection using discounted cash flow (DCF), this methodology is a 
sound alternative to apply under an unstructured environment. 

There may be some weaknesses due to the nonavailability of experts’ 
comments, i.e., judgmental values. Comparison among various similar 
types of systems is the opportunity of the proposed model. An underlying 
threat is associated with the proposed model that a illogical decisions and 
mis-presentation of experts comments may lead to a wrong decision. 

The MCDM methodology proposed in this chapter assumes that the 
decision is made under a fuzzy environment. A comparative study by 
accommodating different measures of uncertainty and risk in the MADM 
methodology may also be made to judge the best-suited measure of 
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uncertainty. A knowledge-based system may be developed based on the 
modified AHP. 
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