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This paper investigates the relation between chaos and swarm intelligence. The
swarm intelligent model is represented as an iterated function system (IFS).
The dynamic trajectory of the particle is sensitive on the parameter values of
IFS. The Lyapunov exponent and the correlation dimension were calculated
and analyzed. Our preliminary research results illustrate that the performance
of the swarm intelligent model depends on the sign of the maximum Lyapunov
exponent. The particle swarm with a high maximum Lyapunov exponent usu-
ally achieved better performance, especially for multi-modal functions.

1 Introduction

In recent years, there has been a great interest in the relations between chaos
and intelligence. Previous studies by Goldberger et al. [3], Sarbadhikari and
Chakrabarty [8] illustrate that chaos has a great important influence on brain
and evolutionary relationship between species etc. Recently chaotic dynamics
in neural networks has also been investigated. The motivation for this research
is to investigate the relation between chaos and swarm intelligence. The par-
ticle swarm provides a simple and very good case for the study. The simple
swarm intelligent model helps to find optimal regions of complex search spaces
through interaction of individuals in a population of particles. The model is
based on a metaphor of social interaction, originally introduced as an opti-
mization technique inspired by swarm intelligence and theory in general such
as bird flocking, fish schooling and even human social behavior [5]. This paper
focuses on the relationship between chaos and swarm intelligence. The particle
swarm is investigated as a simple case. The swarm intelligent model is repre-
sented as an iterated function system (IFS) [9]. We simulate and analyze the
dynamic trajectory of the particle based on the IFS. The Lyapunov exponent
and the correlation dimension are calculated and analyzed.
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2 Particle Swarm Model

A simple particle swarm model consists of a swarm of particles moving in an
d-dimensional search space where the fitness f can be calculated as a certain
quality measure. Each particle has a position represented by a position-vector
x; (i is the index of the particle), and a velocity represented by a velocity-
vector v;. Each particle remembers its own best position so far in a vector
pi, and its j-th dimensional value is p;; . The best position-vector among the
swarm so far is then stored in a vector pg, and its j-th dimensional value is
Dgj- During the iteration time ¢, the update of the velocity from the previous
velocity is determined by (1). And then the new position is determined by the
sum of the previous position and the new velocity by (2).

i (t 4+ 1) = woiz(t) + c1r1(pig (1) — @ij (1)) + cara(pg; (t) — 245()) (1)

xij(t + 1) = .’Eij(t) + ’Uij(t + 1) (2)

where r; and ro are the random numbers, uniformly distributed within the
interval [0,1] for the j-th dimension of i-th particle. ¢; is a positive constant,
called as coefficient of the self-recognition component, cs is a positive constant,
called as coefficient of the social component. The variable w is called as the
inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. From (1), a particle decides where to move
next, considering its own experience, which is the memory of its best past
position, and the experience of its most successful particle in the swarm. In the
particle swarm model, the particle searches the solutions in the problem space
with a range [—s, s] (If the range is not symmetrical, it can be translated to the
corresponding symmetrical range.) In order to guide the particles effectively
in the search space, the maximum moving distance during one iteration must
be clamped in between the maximum velocity [—Zmaz, Lmaz] given in (3), and
similarly for its moving range given in (4):

vij = sign(wi;)min(|zi|, Tmaa) (3)

vij = sign(vij)min(|vij| , vmaz) (4)

The value of vy,q, is p X s, with 0.1 < p < 1.0 and is usually chosen to be s,
i.e. p = 1. The main pseudo-code for particle-searching is listed in Algorithm
1.

3 Iterated Function System and its Sensitivity

Clerc and Kennedy have stripped the algorithm down to a most simple form
[2]. If the self-recognition component ¢; and the coefficient of the social-
recognition component co are combined into a single term ¢, i.e. ¢ = ¢ + ¢2,
the equation can be shortened by redefining p; as follows:
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Algorithm 1 Particle Swarm Model

01.Initialize the size of the particle swarm n, and other parameters.

02.Initialize the positions and the velocities for all the particles randomly.
03.While (the end criterion is not met) do

04. t=t+1;

05. Calculate the fitness value of each particle;

06, Py(t) = argmini_y (f(py(t—1)), f(x1(8)), Fxa(t)), -, Fx (1)), -+, F(xa ()
07. Fori=1lton

08 pi(t) = argminl, (f(pi(t — 1), F(xi(t));
09. For j = 1 to Dimension

10. Update the j-th dimension value of x; and v;
10. according to (1), (4), (2), (3);

12. Next j

13.  Next ¢

14.End While.

i (Clpi + CQPg) (5)
(c1+ c2)
Then the update of the particle’s velocity is defined by:
vi(t+1) =v;(t) + c(pi — xi(t)) (6)

The system can be simplified even further by using y;(¢) instead of p; — x;(¢).
Thus we begin with single particle by considering the reduced system:

{V@+U:V@%Hy@
y(t+1)=-v(t)+ (1 -c)y(t)

This recurrence relation can be written as a matrix-vector product, so that
vit+1) | [ 1 ¢ | [v()
yiE+1) | |-11-c¢ y(t)
Vi
P =
' [YJ

1 ¢
A_{—ll—J

we have an iterated function system for PSO:

Let

and

P 1=A-P;

Thus the system is completely defined by A. Its norm ||A]| > 1 is determined
by c¢. The varying curve of A dependent on ¢ is illustrated in Figure 1. Consid-
ering the IFS, we discuss the particle swarm model with ¢ in the interval [0.5,
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Fig. 1. Norm of A for varying values for ¢

4], i.e. 1.4142 < ||A|| < 5.1926. IF'S is sensitive to the values of ¢. We can find
different trajectories of the particle for various values of ¢. Figure 2(a) illus-
trates the system for a torus when ¢=2.99; Figure 2(b), a hexagon with spindle
sides when ¢=2.999; Figure 2(c), a triangle with spindle sides when ¢=2.9999;
Figure 2(d), a simple triangle when ¢=2.99999. As depicted in Figure 2, the
iteration time-step used is 2000 for all the cases.

4 Dynamic Chaotic Characteristics

Chaotic dynamics is defined by a deterministic system with non-regular,
chaotic behavior [7]. They are both sensitive to initial conditions and compu-
tational unpredictability. The Lyapunov exponent and correlation dimension
are most accessible in numerical computations based on the time-series of the
dynamical system [6]. In this section, we introduce the algorithm to compute
the Lyapunov exponent and correlation dimension for quantitative observa-
tion of dynamic characteristics of the particles, and then analyze the relation
between chaos and the swarm intelligent model.

4.1 Lyapunov Exponent

Lyapunov exponents provide a way to identify the qualitative dynamics of
a system. This is because they describe the rate at which neighboring tra-
jectories converge or diverge (if negative or positive, respectively) from one
another in orthogonal directions. If the dynamics occur in an n-dimensional
system, there are n exponents. The sum of the Lyapunov exponents is the
rate of system expansion. Since chaos can be defined as divergence between
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Fig. 2. Trajectory of the particle (a) ¢ = 2.99, (b) ¢ = 2.999, (c) ¢ = 2.9999, (d)
c = 2.99999.

neighboring trajectories, the presence of a positive exponent is the diagnostic
of chaos. For an IFS, Lyapunov exponents measure the asymptotic behavior
of tangent vectors under iteration. The maximum Lyapunov exponent can be
found using [11]:
1 & dy
A= Jim o) loga( %) (7)
n=1

Where d,, is the distance between the n-th point-pair. A; can be calculated
using a programmable calculator to a reasonable degree of accuracy by choos-
ing a suitably large “N”. We calculated the maximum Lyapunov exponent
of the IFS and is illustrated in Figure 3. The maximum Lyapunov exponent
steadily increases with the value of ¢ in the interval [0.5, 4].

4.2 Correlation Dimension

The dimension in a chaotic system is a measure of its geometric scaling prop-
erty or its “complexity” and has been considered as the most basic property.
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Numerous methods have been proposed for characterizing the dimension pro-
duced by chaotic flows. The most common metrics is the correlation dimen-
sion, popularized by Grassberger and Procaccia [4]. During the past decades,
several investigators have undertaken nonlinear analysis using Grassberger
and Procaccia’s algorithm to evaluate the correlation dimension of time-series
data [10, 1].

Given by N points {x1,z2,- -+, x N}, under iteration of IFS, the correlation
integral is defined by (8):

D= lim 20
r—0 In(r)

(®)

In practice, C(r) is calculated for several values of r and then a plot is drawn
for InC(r) versus In(r) to estimate the slope, which then approximates the
correlation dimension Dy. When ¢ = 3.9, the slope, i.e. Dy is illustrated
in Figure 4. The correlation dimension is depicted in Figure 5. There are
no obvious differences for ¢ values increasing in the interval [0.5, 4]. Ds is
fluctuating mainly within 1+ 0.2.

4.3 Discussions

For analyzing the relation between chaos and the swarm intelligent model,
we optimized two unconstrained real-valued benchmark functions, and then
investigated contrastively the performance of the model with the dynamic
chaotic characteristics. One is the sphere function, given in (9). It is a con-
tinuous, unimodal function, x* = (0, ---,0), with f(x*) = 0. The other is the
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Rastrigin’s function, given by (10). It is a continuous, multimodal function
with multiple local minima. And it has a “large scale” curvature which guides
the search towards the global minimum, x* = (0,---,0), with f(x*) =0.

fx) =) a7 (9)
n=1

n
2
f(x) = E [z — 10cos(2mx;) + 10] (10)
n=1
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Fig. 6. The performance curve for varying values of ¢ for 5-D Sphere function

For the two functions, the goal of particle swarm is to find the global mini-
mum. In our experiments, V,,q. and X,,., are set to 5.12. All experiments for
both functions were run 10 times, and the maximum fitness (maxfitness), min-
imum fitness (minfitness) and the average fitness (avgfitness) were recorded.
The swarm size is set at 10, and 200 iterations for sphere function and the re-
sult are illustrated in Figure 6. The swarm size is set at 20, and 2000 iterations
for Rastrigin’s function and the results are illustrated in Figure 7. Compared
to the results showed in Figure 3, it is obvious that the particle swarm with
a high maximum Lyapunov exponent usually achieved better performance,
especially for the multi-modal functions, as showed in Figure 7. The positive
Lyapunov exponent describes the rate at which neighboring trajectories di-
verge. A high Lyapunov exponent in the particle swarm system implies that
the particles are inclined to explore different regions and find the better fit-
ness values. Since the dimension of the particle swarm is determined by the
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Fig. 7. The performance curve for varying values of ¢ for 5-D Rastrigrin function

objective function, there is no significant difference in the correlation dimen-
sion. The explicit relation between correlation dimension and the performance
of particle swarm can not be found in our experiments. It certainly deserves
some further study.

5 Conclusions and Future Work

In this paper, we focused on the relation between chaos and swarm intelligence.
The particle swarm was investigated as a simple case and the swarm model was
represented by iterated function system (IFS). The dynamic trajectory of the
particle was sensitive on the value of the IFS parameters. We introduced the
algorithm to compute the Lyapunov exponent and correlation dimension for
quantitative observation of dynamic characteristics of the particles, and then
analyzed the relation between chaos and the swarm intelligent model. The
results illustrated the performance of the swarm intelligent model depended
on the sign of the maximum Lyapunov exponent. The particle swarm with
a high maximum Lyapunov exponent usually achieved better performance,
especially for the multi-modal functions.

It is noted that the real intelligent model is more complex than one which
we investigated in the present paper. But it provided more aspects for further
research on swarm intelligence. There are at least two works for future: 1) We
could introduce chaos to overcome the problem of premature convergence in
PSO, which would enjoy the ergodicity, stochastic behavior, and regularity of
chaos to lead particles’ exploration. Taking advantage of this characteristic
feature of the chaotic system, more efficient approaches for maintaining the
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population diversity could be designed for some interesting problems. 2) We
could design more iterated function systems to construct better models or
algorithms.
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