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Abstract Traditional musical-instrument classification methods mainly use regions in the
time or/and frequency characteristics, cepstrum characteristics, and MPEG-7 characteristics,
and they often lead to erroneous classification. Therefore, there is need to develop a more
suitable method that is more applicable to the nonlinear characteristics of musical-instrument
signals and can avoid the abovementioned problems. In this paper, a musical-instrument
classification method that couples the optimized phase-space reconstruction (OPSR) with a
flexible neural tree (FNT) is proposed. As per nonlinear dynamic theory, a principal compo-
nent analysis and correlation coefficient are used to optimize the phase-space reconstruction
(PSR) method. Multidimensional PSR results for different musical-instrument signals are
extracted as the main components, and the dimensionality is reduced by the OPSR method.
A probability density function (PDF) is introduced in the feature extraction step to differentiate
musical instruments according to the phase-space-reconstructible characteristics. A FNT is
adopted as a classifier to tackle the variability in musical-instrument signals and to improve the
adaptive ability of various target classification problems. Experimental testing has been
conducted to show that the proposed OPSR–PDF–FNT algorithm gives superior performance
over other comparable algorithms and can classify 12 musical instruments with an accuracy of
98.2 %.
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1 Introduction

Music is broadly divided into vocal and instrumental music. Music classification is currently a
popular topic and is of great importance in life. McKay proposed the automatic music
classification software jMIR for music information retrieval (MIR) research [21]. jMIR gives
a good performance for the music classification of melodies, pitches, and rhythmic patterns.
However, with regard to musical-instrument classification, jMIR is mainly focused on the
identification of particular instruments. Thus, it is necessary to explore a more suitable
instrument classification method.

In general, musical-instrument families comprise the wind, string, and keyboard families.
The timbre or tone quality is used to distinguish different musical instruments. However, the
tone is a subjective attribute that cannot be accurately described using certain physical
parameters. Methods based on the time or/and frequency, the cepstrum, higher-order spectra,
and MPEG-7 are commonly used in feature extraction for classifying musical instruments [1,
5, 10, 23]. Several conventional machine learning methods such as the k-nearest neighbor
algorithm, a support vector machine (SVM), an artificial neural network, a Gaussian mixture
model, and a hidden Markov model (HMM) [1, 5, 23] are employed for musical-instrument
classification.

Musical-instrument signals typically exhibit nonlinear characteristics. Eronen et al. applied
mel-frequency and linear prediction cepstral coefficients and incorporated them in a k-nearest
neighbor algorithm to classify 16 different western orchestral instruments [10]. The best
performance of the method was a solo tone recognition rate of 35 % for individual instruments
and 77 % for families. Agostini et al. used the spectral characteristics of sound with SVMs and
quadratic discriminant analysis to classify 27 musical instruments [1]. The experiment results
show successful classification rates close to 70 % for family instruments. Bhalke et al.
proposed the classification and recognition of monophonic isolated musical-instrument sounds
using higher-order spectra such as a bispectrum and trispectrum [5]. Their experimental results
show that higher-order spectrum-based variable features improve the recognition accuracy to
88.59 % for family instruments and to 71.93 % for individual instruments. Patil et al. adopted
biomimetic spectrotemporal features and an SVM to identify of musical instruments [23]. The
musical-instrument recognition accuracy is up to 97 % for isolated notes and solo phrases.
However, a single classifier of an artificial neural network (ANN), SVM, or HMM may not
provide a high recognition performance for family instruments. In order to improve the
performance of a single classifier, multiclassifier fusion methods have been widely used.
Benetos et al. presented an automatic musical-instrument identification method to recognize
20 instruments using MPEG-7 descriptors and a variety of classifiers [4]. Their method has a
high classification accuracy in the range of 88.7–95.3 %. However, these feature-extraction
methods are not sufficient for describing the nonlinear characteristics of musical instruments
and often result in the erroneous classification of different family instrument members, such as
the misclassification of clarinet, oboe, and cello signals [24].

Phase-space reconstruction (PSR) is a delay embedding theorem used in nonlinear dynamic
system research and was proposed by Takens in 1981 [25]. In mathematics, the delay
embedding theorem provides the conditions under which a chaotic dynamical system can be
reconstructed from a sequence of observations of the state of a dynamical system [26]. Now, it
is widely employed in medicine [20, 27], astronomy [15], electricity [29], and water disposal
[16]. On the basis of PSR and the multiclassifier fusion method, Rui et al. discussed the PSR of
audio time sequences produced by different instruments [24]. Their experimental results
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indicate that the recognition accuracy of their method is 97.8 % for instrument families and
90.4 % for individual instruments. These methods can demonstrate the nonlinear characteris-
tics of musical instruments; however, the large amount of phase-space-reconstructed data is
needed to achieve a good reduction in the dimension. Furthermore, the multiclassifier fusion
method makes the musical-instrument classification process complex, although it improves the
recognition accuracy.

A flexible neural tree (FNT) was first proposed by Chen [7]. A FNT is a fuzzy model that was
initially proposed to solve the highly structure-dependent problems of an artificial neural network
[7, 8]. The FNT model is computed as an irregular flexible multilayered feed-forward neural
network. On the basis of predefined instruction/operator sets, a FNT can be created and evolved
[8]. As an algorithm of computational science [6–8], a FNToutperforms other classifiers including
an SVM and ANN [7] and is mainly applied in computer modeling and pattern recognition for
medicine [6, 30], biosignal processing [12, 14], and image processing [28].

In this paper, a musical-instrument classification method that combines an optimized PSR
(OPSR) with a FNT is proposed. As per nonlinear dynamic theory, a principal component
analysis (PCA) and correlation coefficient are used to optimize the PSR method. Multidimen-
sional PSR results of different musical-instrument signals are extracted as the main compo-
nents, and the dimensionality is reduced using OPSR. Thus, the large amount of phase-space-
reconstructed data can be reduced in dimension. A probability density function (PDF) is
introduced in the feature extraction step to differentiate the musical instruments according to
the phase-space-reconstructible characteristics.

A FNT is adopted as the classifier to tackle the variability in the musical-instrument signals.
The flexible tree structure makes it possible to automatically choose input variables and reduce
the dimension of the input space. From this, the FNT can instead of the combination of
classifiers, and can reduce the complexity of musical instrument classification process. The
adaptive ability of various target classification problems is also improved. The classification
performance of the OPSR–PDF–FNT algorithm is compared with other comparable algo-
rithms through experiments; the experimental results show that the proposed algorithm
outperforms the other algorithms with a higher recognition rate (Accuracy) and a lower root
mean squared error (RMSE).

2 Methodology

2.1 Algorithm

Figure 1 shows the training and recognition processes of musical-instrument signal classifica-
tion. The training process consists of OPSR preprocessing, OPSR, feature extraction, and
feature database construction using a FNT. The recognition process consists of OPSR prepro-
cessing, OPSR, feature extraction, and classification with the feature database. The RMSE and
classification rate are used to evaluate the performance of the OPSR–PDF–FNT algorithm for
musical-instrument classification [14, 18, 24].

2.1.1 OPSR preprocessing

A one-dimensional time series x = (x1, x2,⋯, xK)
T that demonstrates nonlinear charac-

teristics is considered. In order to extract useful information from a time series, x is
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expanded to an m-dimensional embedded space, and the reconstructed phase-space
vector Y is

Y ¼ y1; y2;⋯; yNð Þ ¼
x 1ð Þ x 2ð Þ ⋯ x Nð Þ

x 1þ τð Þ x 2þ τð Þ ⋯ x N þ τð Þ
⋮ ⋮ ⋮

x 1þ m−1ð Þτð Þ x 2þ m−1ð Þτð Þ ⋯ x N þ m−1ð Þτð Þ

0
BB@

1
CCA ð1Þ

where τ, m, and K are the delay time, the embedding dimension, and the length of x,
respectively. The number of phase vectors in the phase space is N = K − (m − 1)τ. For
reconstructing x in a higher-dimensional space, τ and m are critical parameters in PSR
[24].

Delay time τ The dynamic differences between the respective components in Y can be
obtained from the evolution of the signal source in τ. The appropriate selection of τ can make
the coordinates neither linear nor fully independent, and it plays a vital role in data model
performance. An appropriate value of τ is derived using the average mutual information
method [20, 27]:

I τð Þ ¼
XN

n¼1

P xn; xnþτð Þlog P xn; xnþτð Þ
P xnð ÞP xnþτð Þ ð2Þ

where P(xn) and P(xn, xn + τ) are probabilities. The optimum τ is the delay time corresponding
to the first local minimum value of I(τ).

Embedding dimension m The aim of selecting the embedding dimension is to make the
original dynamic system and the reconstructed phase space topology equivalent. An appro-
priate embedding dimension can describe the characteristics of the original dynamic system
accurately and reduce the influence of the calculation and noise. m is derived by using the false
nearest neighbor (FNN) method [15, 16, 29].
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Fig. 1 Flowchart of the musical-instrument signal classification process
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In an m-dimensional phase space, each phase point X(i) = [x(i), x(i + τ),⋯, x(i + (m − 1)τ)]
has a closest point XNN(i) within a certain distance, and the distance between these two points
is given by

Rm ið Þ ¼ X ið Þ−XNN ið Þ�� �� ð3Þ
When the embedding dimension of the phase space is between m and m + 1, the distance of

the two points will change. In this case, the distance between the points is Rm + 1(i), which is
given as

R2
mþ1 ið Þ ¼ R2

m ið Þ þ X iþ τmð Þ−XNN iþ τmð Þ�� ��2 ð4Þ

When a i;mð Þ ¼ X iþ τmð Þk −XNN iþτmð Þk
Rm ið Þ>Rτ

, XNN(i) is the FNN point of X(i), where Rτ is a

threshold that lies between 10 and 50. The proportion of FNN points can be calculated by
identifying the falsity of the neighboring points of each phase vector in the m-dimensional
space. When the proportion of FNN points is less than 5 %, the phase-space trajectory is fully
open, and m is the optimum embedding dimension.

2.1.2 OPSR

OPSR can improve the dimension reduction performance of Y. A principal component analysis
(PCA) is applied to reduce the dimensionality of Y. Y is projected into the reduced space
defined by only the first L singular vectors WL:

A ¼ WT
LY ¼ ∑LV

T ð4Þ

where ∑L = IL ×m∑, and IL ×m is an L ×m rectangular identity matrix. The matrix Σ is an m ×N
rectangular diagonal matrix with nonnegative real numbers on the diagonal, and the N ×N
matrix V is the matrix of the eigenvectors of YTY [11, 18].

After the first dimension reduction by PCA, the components of the dimension-decreasing
vector A are mainly independent. However, the amount of data in A is still large and increases
the complexity of the subsequent experiment. In order to reduce the dimensionality of A and
shorten the running time of the program, the correlation coefficients between the components
of A and the original musical-instrument signal x are adopted. The correlation coefficient can
be expressed as [13]

r ¼

XN

i¼1

xi−x
� �

ci jð Þ−c jð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

xi−x
� �2

⋅
XN

i¼1

ci jð Þ−c jð Þ
� �2

vuut
ð5Þ

When the correlation coefficient is less than the correlation coefficient criterion, the
component of A will be discarded. The correlation coefficient criterion is formulated in
Section 2.2. After the second dimension reduction by the correlation coefficient, A is changed
to an M ×N rectangular matrix C.
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2.1.3 Feature extraction

For musical-instrument classification, the extraction of features that reflect the essential
characteristics of the musical-instrument signals is important. For describing the differences
in various musical instruments more accurately, except for some traditional acoustic parame-
ters, the mel-frequency cepstral coefficient (MFCC), short-time energy, zero crossing rate, and
linear prediction coefficient are used to extract the characteristics of musical-instrument
signals. In addition, a PDF is used to depict the intensity distribution of each trajectory in
the phase space. The extracted features of the musical-instrument signals are the inputs of the
musical-instrument recognition model. The expression of the PDF is as follows:

p cð Þ ¼ 1

N

XN

i¼1

1

hM
k

c−ci
h

� �
ð6Þ

where x is the center, and h is the side length of G. G is a tiny cube. k(u) is a kernel function. N
is the number of samples, and M is the number of data dimensions. According to each
component of C, we can sample and compute the PDF. From this basis, the feature set H
with M lines and B columns can be obtained by PDFs. Note that, B <N [1, 5].

2.1.4 Feature database construction using a FNT

The musical-instrument recognition model is approximated using a neural tree model with
predefined instruction sets. The instructions of the root node, hidden nodes, and input nodes
are selected from three instruction sets [7, 8]. We have used two instructions in the experi-
ments. The instruction sets are as follows (see Fig. 2):

+ i(i = 2, 3,⋯,N) denotes the instructions of the nonleaf nodes that take i arguments, and
h1, h2,⋯, hn represent the instructions of the leaf nodes that take no other arguments.

Figure 3 clearly shows that the output of + n, which is also called a flexible neuron operator,
is calculated as a flexible neuron model with n arguments.

Input layer

Output layer

Second hidden layer

First hidden layer

3h2h 3h2h1h

Fig. 2 Flexible neural tree with
function instruction sets I = {+2, +
3, + 4, + 5, h1, h2, h3}
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When a nonleaf instruction + i(i = 2, 3,⋯,N) is selected, i real values are evolved auto-
matically and used to demonstrate the connection strength between + i and its children. The
output of + n can be calculated as

netn ¼
Xn

j¼1

ω j*h j ð7Þ

where hj(j = 1, 2,⋯, n) are the inputs to + n. Gaussian functions, unipolar sigmoid functions,
bipolar sigmoid functions, nonlocal radial coordinates, thin-plate s-spline functions, and
general multiquadratics can be adopted as flexible activation functions [2, 14].

For developing the FNT classifier, the following flexible activation function is used:

f ai; bi; hð Þ ¼ e
− h−aið Þ

.
bi

� �2

ð8Þ

where the two adjustable parameters ai and bi are randomly created as flexible activation
function parameters. hj (j = 1, 2, 3) is the input to + n. The output of + n is then calculated by

outn ¼ f an; bn; netnð Þ ¼ e
− netn−anð Þ

.
bn

� �2

ð9Þ

Probabilistic incremental program evolution (PIPE) is selected as a tree-structure-based
encoding method with specific instruction sets for fine tuning the parameters encoded in the
structure. Starting with the initial set structures and corresponding parameters, PIPE first
attempts to improve the structure; then, as soon as an improved structure is found, the
parameters of the structure are fine-tuned. Next, PIPE returns to improve the structure again
and finds a better structure. The rules’ parameters are fine-tuned again [12].

A fitness function arranges the FNT into scalar and real-valued fitness values that reflect the
FNT performance according to a given task. In the experiments, the fitness function used for
PIPE is given by the RMSE as

Fit ið Þ ¼

XP

j¼1

y j1−y
j
2

� �2

P
ð10Þ

When a satisfactory solution is found or a time limit is reached, the loop ends [14]. The
evolved neural tree model is obtained at iteration 28 with the function instruction sets I = {+

2, + 3, + 4, + 5, h1, h2, h3}.

1h

2h

nh

y

Fig. 3 Flexible neuron operator
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2.1.5 Classification with the feature database

The recognition process consists of OPSR preprocessing, OPSR, feature extraction, and
classification with the feature database. The first three parts are similar to the training process.
However, the last part, Bclassification with the feature database,^ is different. The feature
database trained by use of a FNT is adopted for classification purposes. Families of musical
instruments and individual musical instruments are used in the classification experiments. The
RMSE and recognition rate (Accuracy) are used to verify the classification performance.

2.2 Assessment method

If the choice of the correlation coefficient criterion is not adapted, some error will occur in the
experiment. In order to ensure computational efficiency and precision and to minimize the
influence of the correlation coefficient, we choose 0.1 ≤ |rij| ≤ 1, 0.3 ≤ |rij| ≤ 1, and 0.5 ≤ |rij| ≤ 1
as the correlation coefficient criteria to test.

As shown in Fig. 4, a larger floor value of the cross correlation criterion results in a higher
recognition rate (Accuracy) fewer iterations for the various musical instruments. The dulcimer,
piano, violin, and guitar always have relatively high recognition accuracy and a low number of
iterations. The recognition accuracy of different instruments are very close when 0.1 ≤ |rij| ≤ 1
or 0.3 ≤ |rij| ≤ 1 is selected as the criterion, whereas the number of iterations for 0.1 ≤ |rij| ≤ 1 is
much larger than those for 0.3 ≤ |rij| ≤ 1 and 0.5 ≤ |rij| ≤ 1. Considering the above, we choose
0.3 ≤ |rij| ≤ 1 as the cross correlation criterion for the second dimension reduction.

3 Experiments

Experiments were conducted to evaluate the performance of the OPSR–PDF–FNT algorithm
in musical-instrument classification. We compared its performance with various state-of-the-
art methods that were available in the jMIR and Weka open-source software packages, such as
the HMM, SVM, bagging, and random forest methods. The RMSE and recognition rates
(Accuracy) were used as evaluation metrics to verify the classification performance.

The signals used in the experiment were downloaded in the WAV format from the music
database of the University of Iowa. This database contains 761 single samples of 20 types of
musical instruments, and all samples are recorded under the same conditions. The duration of
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Fig. 4 Recognition rates (Accuracy) and the number of iterations of various musical instruments for different
correlation coefficient criteria
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the samples is more than 4 s [24]. The frequency of the musical-instrument signals is
44,100 Hz. There are 12 instruments belonging to the three main families of musical
instruments, and 10 groups of samples per instrument were used in the experiments. After
sampling, each group sample takes 5000 samples. A leave-one-out cross validation was
adopted to train and test each instrument.

3.1 Classification for families of musical instruments

For reconstructing the samples of musical-instrument signals in the phase space, we consider a
sample of an instrument with τ. This sample is mapped to an m-dimensional embedded space.
Taking a horn sample signal as an example, τ and m can be obtained using the average mutual
information method and the FNN method, respectively.

In Fig. 5, τ is the corresponding ordinate value 9 of the first zero cross point, and m is the
corresponding abscissa value 5 of the first zero cross point. When we determine the values of τ
and m, the musical-instrument sample signals can be reconstructed in a higher phase space. A
PCA is used to map the high-dimension reconstructed phase-space vector to a lower dimension
space. To improve the performance of the dimension reduction and to shorten the running time of
the program, after the first dimension reduction by the PCA, the correlation coefficients between
the principal components and the original data of the original musical-instrument signals are
computed (see Table 1). In Table 1, taking the horn sample as an example, we find that the third
correlation coefficient between the principal components and the original data is 0.1358 and is
smaller than 0.3. According to Fig. 4, the third line principal components can be removed. Thus,
we realize a dimension reduction by adopting the correlation coefficient criterion.

In order to visualize the dynamic structure of the system, the dimension reduction vector is
projected into a three-dimensional space. Figure 6a and b show the sample signals and three-
dimensional structure of various families of musical instruments. Figure 6c, d, e, and f show
the three-dimensional structure of various families of musical instruments.

Fig. 5 Delay time and embedding dimension of a horn sample signal

Table 1 Correlation coefficients between the principal components and the original data

Instruments Correlation coefficient between principal components and original data

Horn 0.7661 0.6419 0.1358

Piano 0.8839 0.4439 0.2293 0.0245

Trumpet 0.6777 0.7199 0.3124 0.1242 0.0142

Flute 0.1197 0.7745 0.6210 0.0364 0.0159 0.0114
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In the time domain, the sample signals are all periodic or periodic-like, and they are not
easy to classify. However, various musical instruments have different topological structures in
the three-dimensional space. The topological structures of the violin and trumpet show circular
orbits, and the track distribution of the trumpet is relatively loose. Though the phase-space
tracks of the piano appear messy, the distribution is focused in a relatively stable range. The
phase-space tracks of the oboe are similar to a dance ribbon that is twisted and concentrated;
however, they present a certain regularity. Furthermore, the phase-space tracks of musical
instruments differ depending on the different tones and pitches.

To describe the differences between the various families of musical instruments, the PDF
and other traditional features, including the MFCC, short-time energy, zero crossing rate, and
linear prediction coefficient are extracted as tone features [3, 9, 17, 19, 22]. Figure 7a depicts

Fig. 6 Sample signals and three-dimensional structures of various families of musical instruments
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the PDF values of the sample signals of the piano, horn, trumpet, flute, and violin. We can
clearly observe that the flute sample signal has the highest PDF, and the PDF of the piano
sample signal is the lowest. The PDF of the horn and trumpet sample signals partly overlap
because the horn and trumpet both belong to the brass family. The PDF of the violin is more
volatile than the other four instruments. Figure 7b, c, and d show the other tone features of the
horn sample signals. All of these features can be combined into a new multidimensional
vector. From these multidimensional feature vectors, the instruments in the three families of
musical instruments can be distinguished by adopting the PDF and other features.

We use a FNT as a classifier to recognize families of musical instruments. As shown in
Fig. 3, the instruction set is I = {+2, + 3, + 4, + 5, h1, h2, h3}. The FNT selects the proper input
variables or time lags automatically. In addition, the parameters used for the experiment are
listed in Table 2.
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Fig. 7 Some features of the horn sample signal: the (a) PDF, (b) linear prediction coefficient, (c) short-time
energy and zero crossing rate, and (d) MFCC

Table 2 Parameters used in the PIPE algorithm for the architecture optimization of the FNT

Population size PS 100

Elitist learning probability Pel 0.01

Learning rate Ir 0.01

Fitness constant 0.000001

Overall mutation probability PM 0.4

Mutation rate mr 0.4

Prune threshold Tp 0.999

Maximum random search steps 2000

Initial connection weights rand[−1, 1]
Initial parameters ap and bp rand[0,1]
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In comparison to the other models for nonlinear function approximation, the OPSR–PDF–
FNTalgorithm has better performance with respect to the average recognition rate (Accuracy). In
Table 3, the comprehensive method implies the method combining the tone features and PDF.

3.2 Classification of individual musical instruments

In the experiments, the sample signals of 12 individual musical instruments were reconstructed
in a high-dimensional phase space, and the dimension was reduced using OPSR. The features
were extracted from the dimension reduction vector by the comprehensive method. The FNT is
used to classify 12 individual musical instruments.

Figure 8 shows that the model outputs are close to the real outputs, indicating that the FNT
is better for classifying musical instruments. The mean value of the RMSE is 0.000451 for the
training data and 0.000573 for the test data.

In Table 4, we adopt the confusion matrix proposed by Stehman in 1997 [28] to show the
classification results for 12 musical instruments. Each column of the confusion matrix
represents the instances in a predicted class, while each row represents the instances in an
actual class. The results enclosed in parentheses are the recognition rates (Accuracy) achieved
using the OPSR–tone-feature–FNT method, whereas those outside the brackets are the means
of the recognition rates (Accuracy) achieved using the OPSR–PDF–FNT method. The diag-
onal data express the recognition accuracy for each musical instrument.

From Table 4, we find that the recognition rates (Accuracy) of the OPSR–PDF–FNT
method are superior to those of the OPSR–tone-feature–FNT method. In addition, the exper-
iment results for keyboard instruments and string instruments are obviously better than those
for wind instruments. Taking the violin as an example, the correct recognition rate (Accuracy)
is 95.8 % when adopting the OPSR–PDF–FNT method. However, the violin is classified as a
guitar (3.9 %) and as a flute (0.3 %). The mean recognition rates (Accuracy) for individual

Table 3 Average recognition rates (Accuracy) of three families of musical instruments (%)

Classifier FNT SVM HMM Bagging Random Forest

Feature method

Tone features 96.2 93.8 94.3 95.4 96.8

PDF 84.6 80.7 82.1

Comprehensive method 98.3 97.5 97.6

Fig. 8 FNT model outputs and RMSE
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musical instruments increase to 93.3 % by using the proposed method, and they are higher
than 89.6 % using the OPSR–tone-feature–FNT method.

4 Conclusion

In this paper, a musical-instrument classification method by combining OPSR with the PDF
and FNT was proposed to classify individual musical instruments and families of musical
instruments. It was shown that the OPSR–PDF–FNT method has several desirable properties
for musical-instrument signal classification:

First, as per nonlinear dynamic theory, PSR maps a one-dimensional time series of a
musical instrument to an m-dimensional embedded space. The multidimensional PSR
results maintain the topological characteristics of the original time series and contain more
dynamic information.
Second, a PCA and correlation coefficient are used to optimize the PSR method. The
multidimensional PSR results of different musical-instrument signals are extracted as the
main components, and the dimensionality is reduced by OPSR.
Third, in order to describe the differences between various musical instruments, we use
the PDF and other traditional features to construct a comprehensive method to extract the
features of musical instruments.
Fourth, a FNT is good at evolving an approximating model of the static nonlinear system.
With this advantage, the FNT is adopted as a classifier to tackle the variability in musical-
instrument signals and improve the adaptive ability of various target classification
problems.

The proposed algorithm was compared with the OPSR–PDF–SVM, OPSR–PDF–HMM,
and OPSR–tone-feature–FNT algorithms. The simulated results showed that proposed algo-
rithm outperforms the other three algorithms with higher recognition rates (Accuracy) and
lower RMSEs.

There are two directions to take this work in the future. The first is to build a more concise
model of OPSR to better reduce the dimension of the PSR vectors. Second, the addition of a
recurrence analysis method to OPSR could aid in extracting more characteristics of the
musical-instrument signals.
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